2024人教版三年级数学下册教案5篇
教案的编写需要充分利用现代教育技术手段,优质的教案能够帮助教师更好地调整教学策略,提高学生的学习效果和成绩,下面是淘范文小编为您分享的2024人教版三年级数学下册教案5篇,感谢您的参阅。
2024人教版三年级数学下册教案篇1
教学目标
1.通过具体的活动,认识方向与距离对确定位置的作用。
2.能根据任意方向和距离确定物体的位置。
3.发展学生的空间观念。
教学重点
用方向和距离描述物体的位置。
教学难点
对任意角度具体方向的准确描述。
教学过程
一、创设情境 生成问题
春季是运动的最好时节,我们同学们都很爱好运动,不久我校就会举行一次越野比赛,现在老师将越野图展现给大家。
二、探索交流 解决问题
1.出示越野图的起点和终点位置。
2.如果你是一名运动员,你将从起点向什么方向行进?(方向标)加方向标有什么好处?为什么方向标画在起点的位置?(以起点为观测点)
3.自主探究,小组讨论,合作交流
例1的学习是让学生明确可以根据方向和距离两个条件确定物体的位置。教学时,可以与主题图的教学结合进行,通过情境使学生明确需要方向和距离两个条件才能确定物体的位置。活动中确定方向的具体方法可以让学生小组合作进行探索。
知道在出发点的东北方向就可以出发吗?如果这样会发生什么情况?这样确定方向准确吗?怎么样走会更加的准确?
准确的可以说是东偏北30°,那可以用北偏东60°这样表示吗?在说具体位置时,一般先说与物体所在方向离得较近(夹角较小)的.方向。——靠近哪个方向就把那个方向放在前面。
(距离 1千米)如果没有距离又会怎样?
1号点在起点的东偏北30°的方向上,距离是 1千米。你学会表示了吗?
三、巩固练习 内化提高
做一做呈现了小明家附近几处建筑物的位置示意图,通过方向与距离的确定,使学生进一步明确确定方向的具体方法。
练习三第1、2题是相应的在地图上确定方向的练习。
四、回顾整理 反思提升
我们可以根据题目提供的方向和距离这两个条件来确定物体的位置。首先要确定方向标。
2024人教版三年级数学下册教案篇2
【教学目标】
1.知识与技能
(1)认识并掌握正方体的特征,理解长方体与正方体之间的关系。
(2)培养学生的观察操作能力,抽象概括能力,发展空间观念。
2.过程与方法
(1)通过观察实物和动手操作等教学活动,使学生掌握正方体的特征。
(2)通过小组合作学习,探究长方体与正方体的关系。
3.情感态度与价值观
(1)体验合作探究的乐趣,培养学生的合作意识。
(2)感受数学与生活的联系,发展学生的思维。
【教学重点】
正方体的特征及长、正方体的异同点。
?教学难点】
建立立体图形的概念,形成表象。
【教学方法】
启发式教学、自主探索、合作交流、讨论法、讲解法。
【课前准备】
多媒体课件
【课时安排】
1课时
【教学过程】
(一)复习旧知,导入新课。
1、师:上节课我们学习了长方体的特点,请你回忆一下,回答下面的问题。(课件第2张)
(1)长方体有(6)个面,都是(长方)形,也可能有(2)个相对的面是正方形。长方体相对的面(完全相同)。
(2)长方体有(12)条棱,相对的棱(长度相等)。
(3)长方体有(8)个顶点。
在我们的身边,除了许多长方体的物体,还有许多是正方体。(课件第3张)
比如:骰子、魔方、沙包、积木、礼品盒等,这些都是正方体。
你还能说出生活中的哪些物体是正方体呢?
生举例说。
?设计意图】
从学生熟悉的生活中的事物引入,使学生感觉到数学与生活的紧密联系,感受到生活中处处有数学。
2、你知道它有什么特征吗?这节课我们就来学习和研究正方体的特征,并板书课题。
(二)探究新知
1.仔细观察课前准备好的正方体,你发现正方体有什么特点?
(1)小组合作:
拿一个正方体的物品来观察,想一想它有什么特点?
(2)汇报交流:(课件第6张)
生1:正方体的6个面都是正方形,并且完全相同。
生2:正方体的12条棱长度都相等。
2.总结正方体的.特点。(课件第7张)
正方体有6个面,每个面都是正方形,这6个面完全相同。
正方体有12条棱,所有的棱长度都相等。
正方体有8个顶点。
正方体是由6个完全相同的正方形组成的立体图形,所有的棱长度相等。
?设计意图】
用小组讨论的方式,让学生从观察实物的过程中发现正方体的特点,培养学生的观察能力、思维能力。
3.小组讨论:长方体和正方体的异同点。
拿出一个长方体和一个正方体,观察一下:正方体和长方体有什么相同点,有什么不同点?(课件第8、9张)
生1:长方体和正方体都有6个面,12条棱,8个顶点。
生2:长方体的6个面一般是长方形,正方体的6个面都是正方形。
生3:长方体相对的棱长度相等,正方体的所有棱长度都相等。
4.列表比较一下:(课件第10、11张)
5.长方体和正方体的关系(课件第12张)
师:长方体和正方体有什么关系?
生1:正方形是特殊的长方形,正方体也是特殊的长方体。
师:特殊在哪里?
生2:正方体可以看做是长、宽、高都相等的长方体。
师:你会用集合图来表示它们的关系吗?
6.小结:(出示课件第13张)
(1)正方体的6个面都是完全相同的正方形。
(2)正方体的12条棱都相等。
(3)正方体是长、宽、高都相等的长方体。
?设计意图】
对所学的知识加以总结,加深学生印象,使学生能查漏补缺,更好地掌握本节课所学的知识点。
7.做一做:(课件第14张)
小组活动:小组同学配合,用棱长1cm的小正方体搭一搭。并思考:
(1)搭一个稍大一些的正方体,至少需要多少个小正方体?
(2)用12个小正方体搭一个长方体,可以用几种不同的摆法?搭出的长方体的长、宽、高分别是多少?
(3)搭一个四个面都是正方形的长方体,你发现了什么?
8.答案揭晓:(课件第15张)
(1)搭一个稍大一些的正方体,至少需要8个小正方体。如下图:
(2)用12个小正方体搭成一个长方体,可以有几种不同的摆法?搭出的长方体的长、宽、高分别是多少?(课件第16张)
第一种摆法:
这个长方体的长是12cm,宽是1cm,高是1cm。
第二种摆法:(课件第17张)
这个长方体的长是6cm,宽是2cm,高是1cm。
第三种摆法:(课件第18张)
这个长方体的长是4cm,宽是1cm,高是3cm。
?设计意图】
通过让学生动手操作,用小正方体摆成不同的长方体,可以使学生对长方体和正方体的特点理解的更为透彻,为下一步学习长方体和正方体的表面积和体积做好准备,同时也培养了学生的动手能力。
(3)搭一个四面都是正方形的长方体,你发现了什么?(课件第19张)
搭一个四面都是正方形的长方体,搭成的长方体其实就是一个正方体。
(三)课堂练习
谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?
1.这个正方体的棱长是多少?有几个面的形状完全相同?(课件第20张)
这个正方体的棱长是5cm。它有6个面的形状完全相同。
?设计意图】
本题的设计能让学生更好地理解正方体的特点,知道正方体的棱长都相等,6个面也是完全相同的。
2.这个正方体的棱长之和是72分米,它的棱长是多少分米?(课件第21张)
正方体12条棱相等,棱长和是72dm,可以求出一条棱的长度。
72÷12=6(分米)
答:它的棱长是6分米。
(四)拓展提高。(课件第22、23、24张)
用铁丝做一个底面周长是56厘米的正方体框架,需要铁丝多少厘米?
(1)小组讨论:先求什么?再求什么?说说你的思考过程。
(2)汇报交流:
正方体的12条棱都相等,可以先求一条棱的长度,再求12条棱的总长度。
56÷4×12
=14×12
=168(厘米)
答:需要铁丝168厘米。
(3)底面周长就是4条棱长是总和,求12条棱长的总和,就是56厘米的3倍。
56×(12÷4)
=56×3
=168(厘米)
答:需要铁丝168厘米。
(五)课堂总结
师:通过学习,你有什么收获?
生交流:
1.正方体有6个面、12条棱、8个顶点。
2.正方体的6个面是正方形,6个面是完全相同的。
3.正方体的12条棱都相等。
4.正方体长、宽、高都相等的长方体。
(六)板书设计
正方体
1.正方体有6个面、12条棱、8个顶点。
2.正方体的6个面是正方形,6个面是完全相同的。
3.正方体的12条棱都相等。
4.正方体长、宽、高都相等的长方体。
【教学反思】
1、遵循学生认知规律,正确把握教学起点
充分尊重学生的已有知识,遵循学生的认知规律、学习经验、学习兴趣,恰当地把握教学起点。例如本课在导入时,以尊重学生原有知识经验为基础,先回忆有关长方体的特点的有关知识,再开门见山设计了辨认生活中那些物体是正方体,然后直接转入正方体特征研究,避免了教学拖沓、使学生迅速进入学习的重点。
2、注重动手操作,让学生积累空间观念。
正方体的认识在几何形体知识属于直观几何阶段,教学时我注重引导学生动手操作实践,让学生在看一看、摸一摸、认一认等实际操作中,使自己的多种感官参与活动,丰富自己的感性认识,掌握几何形体的特征,不断积累空间观念。
3、教会知识,更要教会获取知识的方法。
本节课的题目是正方体的认识,让学生用类比法参照长方体特征研究过程研究正方体的特征,最后进行两者之间的异同比较完成新知识的学习。这种过程的设计既留给了学生足够的自主探究的空间,同时又教会了一种知识探究的方法。学生学会了知识,也提高了能力。
2024人教版三年级数学下册教案篇3
?教学内容】
三年级下册第26页
?教材分析】
对于学生来说,经历从两位数乘一位数到两位数乘两位数的乘法过程是形成乘法计算技能的重要环节,也是后续学习两位数乘三位数的基础。为此教材以“住新房”的情境为载体,通过解决一栋楼的总住户的问题,帮助学生理解两位数乘两位数的乘法的算理。在具体解决“总住户”的计算问题时,教材呈现了三种算法,前两种是计算两位数乘整十数、两位数乘一位数,再将这两部分的积相加,这是乘法竖式计算的重要基础,本节课应注重口算方法与竖式方法的沟通。第三种是竖式计算,这是计算两位数乘两位数的一般方法。
?学生分析】
本节课的学习是在学生学习了“乘数是整十数的乘法”和两、三位数乘一位数的竖式计算的基础上的进一步学习。学生可以通过独立探索、小组交流,全班汇报交流等学习活动,利用已有知识的'迁移理解和掌握“两位数乘两位数(不进位)”的计算方法,学生很有成就感。
由于学生只有一位数乘法的基础,让学生独立思考怎样算14×12时,大多数学生只能想出口算方法,只有个别学生能在预习或家长提前指导的情况下,正确书写竖式,这节课正需要这些孩子来激发全班思维,让同学们在看竖式的过程中,分析竖式计算算理、算法,通过观察,分析,学生能把竖式计算与口算算法进行沟通。
?学习目标】
1.结合“住新房”的问题情境,探索两位数乘两位数(不进位)的乘法,经历估算与交流算法多样化的过程。会进行两位数乘两位数的乘法竖式计算,理解竖式乘法每一步计算的含义,并能解决一些简单的实际问题。
2.依据新教材特点,在独立思考的基础上,写出算式并交流,理解竖式计算的算理、算法。
3、通过交流相互启发、相互影响,共同寻找、自主探究、体验,掌握数学的知识、思想与方法,充分感受到数学的魅力和乐趣。
?教学过程】
一、创设情境(3分钟)
师:淘气今天可高兴了,因为他要搬新家了,他邀请了很多小朋友参加,也邀请了我们,想去吗?
生:想
师:那去看看吧!(课件出示)
师:真漂亮,这栋电梯公寓真大,大家都想进去了(智慧老人:请你根据你发现的数学信息提出一个数学问题?)
生:每层14户,有12层,这栋楼能住多少户?(板书并问)你能出算式吗?想想算式的意思?
师:你能列出算式吗?
生:14×12=(板书)或12×14=
师:很能干,一下就说到了乘法的意义。
师:今天的算式和我们过去学过的乘法有什么不同?
生:今天的两个乘数都是两位数,以前我们只学过两位数乘一位数,昨天我们学的两位数乘整十数。(板书:两位数乘两位数)
师:你的记忆真好,很会学习,这就是我们今天要学习的新知识,任意两位数乘两位数。
[设计意图]能结合教材与学生实际创设一个生动的情境,既为后面学习“两位数乘两位数”(竖式)的算理做了铺垫,又激发了学生学习新知识的兴趣。
二、探索新知
1、估算14×12(5分钟)
师:这栋楼房大约能住多少人呢?我们用过去学过的方法估一估淘气他们住的楼房大约能住多少户人家?
生:140
师:你是怎样估计的?
生:140户左右,把12想成10,14×10=140(户)。
师:知道把12想成整十数,估得真快,了不起。还有不同的估算结果吗?
生:120户左右,把14想成10,12×10=120(户)。
生:100户左右,把10想成10,10×10=100(户)
师:把它们都想成了整十数,很快地估出了结果,同学们想一想,这三种估算方法里面,哪种更接近正确结果呢?为什么?
生:我觉得得数是140更接近准确结果,因为这样估计的误差最小。……
2、思考怎样计算14×12,探索方法(10分钟):
师:这栋楼到底能住多少户人呢?可是,像这种两位数乘两位数的怎样算呢?你能想办法算出14×12的准确结果吗?试一试,把你计算的方法写在作业本上。(教师巡视,请学生将自己的算法写在黑板上,只展示与竖式有关的算法,看学生竖式的书写情况,请学生上台板书有代表性的三种竖式方法。)
[设计意图]让孩子在估算的基础上,通过一些挑战性的问题——像“这种两位数乘两位数的怎样算呢?”,“你能想办法算出14×12的准确结果吗?”,激起学生主动探索欲望,也凸显了本节课的重点。
师:你能看懂这种方法吗?(口算)谁来说一说他是怎么算的?(提示:乘法意义,也就是算几个几)
生:14×10=140(先算14×10,也就是10个14,等于140)
14×2=28 (再算14×2,也就是2个14,等于28)
140+28=168(最后把它们的积加起来,得168)
师:你理解得太好了,非常能干。那这种方法呢?你能看懂吗?谁又来说一说?
生:12×10=120(先算每层楼有10户人,12层就有12个10,共120户)
12×4=48(但它每层还有4户人,12层就有12个4,共48户)
120+48=168(最后把它们的积加起来,得168)
师:还有其它方法吗?
生:我把12拆成了3×4,也就变成14×3×4=168(人)
师:它转化成了二位数乘一位数的知识,想得真好。大家都能灵活地运用我们学过地知识,来解决新问题,这不仅是我们聪明和能干,也是一种非常好的学习方法,在以后的学习数学过程中会经常用到。
[设计意图]让学生在独立思考的基础上,通过生生互动,在合作交流中,理解口算每一步的意思及方法,为学习竖式打下了坚实的基础。
3、探索竖式计算14×12的方法(10分钟)
师:大家请看,两位数乘两位数还能用竖式计算?从结果来看,对了吗?
生:对的,都是168。今天我们就重点讨论,如何用竖式计算两位数乘两位数?看一看,想想同学是怎样算的?(板书:怎样算)先独立思考,再将你的想法在四人小组里说一说。
师:谁来代表你们小组说一说这些竖式是怎么算的?
生:我们小组发现第1,2个竖式都是先算2×14等于28,再算10×14等于140,最后将结果加起来,等于168。只是一个写了0,一个没有写0,但都不影响计算结果,都是对的。
师:听懂了吗?谁再来说一说?
生:第一步还是先算2×14=28,第二步因为1在十位上,代表一个十,相当于10×14=140,所以应该在结果上写成140。再用28+140=168,第三种方法相当于把140后的0省略了,但1对齐百位,4对齐十位,还是表示的140,对最后的结果没有影响。
师:说得太精彩了,一下就看出了每一步是怎样算出来的,真有数学头脑。
大家明白了吗?还有补充吗?
生:先算2×14就是算的2层楼共住28户,就是2个14;再算的是10层楼住140户,也就是10个14。
师:你不仅知道它是怎样算的,还知道用乘法的意义来解释这样算的道理,太会思考了,值得大家学习。大家都听懂了吗?那你能看懂第三个算式吗?
生:它是先拿第一个乘数的个位上的数4分别乘2和1,得到48,再用十位上的数1乘2和1,得到120,最后将48和120相加,得168。
师:这种算法和前两种不一样,但它也是正确的,只是我们通常先用第二个乘数个位上的数乘第一个乘数每一位上的数,再用第二个乘数十位上的数乘第一个乘数每一位上的数,以此类推。所以我们今天重点研究前2个竖式,对于它们,你还有什么疑惑?
生:为什么有0和没0都是对的呢?
师:问得好,谁能解释?
生:因为这题写0和不写0都不影响最后的结果,所以可以省略不写。
师:说得很好,就是这样的。
生:为什么4要写在十位上,1要写在百位上呢?
师:你真是问到点子上了,有谁能回答?
生:十位上的1代表1个十,所以得到的是14个十,也就是140,把末尾的0省略了,而不是14。
师:同意吗?(生:同意)这一点很重要,是我们竖式中很重要的一步,你明白了吗?
[设计意图]把“用竖式怎样算”确定为本节课的探究点,很多学生并不会列竖式,通过观察同学列出的竖式,先独立思考,再小组合作研究它们每一步是怎么算的。不仅准确地突出了本节课的重点和难点,也为学生理解用竖式计算“两位数乘两位数的乘法”的算理,掌握其算法提供了广阔的自主探究空间,充分体现了学生的主体作用。
4、强化理解竖式(5分钟)
师:还有疑惑吗?那好,智慧老人他可有问题了,看你是不是真的懂了?请注意!(课件演示每一步,并展示竖式计算的步骤)
师:28怎么得来的?()×(),也就是()个()
具体怎样算呢2×14呢?请你认真看屏幕。你明白了吗?谁来说一说?
生:先用第二个乘数个位上的2,乘第一个乘数的每一位上的数。[设计意图]看得很仔细,你真会学习。)
师:第二步出现(14),它是怎么得来的?
师:有什么疑问?
生:4为什么可以写在个位?
师:问得真好谁来帮助他?
生:十位上的1代表1个十,所以得到的是14个十,也就是140,把末尾的0省略不写,所以4在十位上,1在百位上。
师:最后一步呢?指着( )+( )
生:28+140
师:同意吗?你们的脑筋转得真快,真聪明!现在你明白了两位数乘两位数竖式的运算顺序了吗?请再看老师演示,谁来讲一讲?
生:先用第二个乘数个位上的数乘第一个乘数每一位上的数,得到一个结果,再用第二个乘数十位上的数乘第一个乘数每一位上的数,得到第二个结果,最后将两个结果相加。
师:你很会学习,并且很会表达你的想法,是大家的好榜样!
师:现在赵老师可有问题了,对比口算和竖式,你有什么发现?
生:我发现竖式中每一步口算中也有,它们的算法是一样的,只是表现的形式不一样。比如说:竖式中第一步2×14=28,口算中有;第二步10×14=140,口算中还是有,最后28+140=168,口算中还是有。
师:你太会发现数学最本质的现象了,说得很经典,谁听明白了?
师:今天真有成就感,用口算和竖式这种新的方法都算出了准确结果,和哪个估算结果比较接近(生:140)对,请你将书上26页的方法,再算式和答语补充完整。
[设计意图]巧妙地通过“智慧老人提问”的情境,引导学生进一步深化理解竖式计算每一步的意义,梳理用竖式计算的方法和运算顺序,让不同层次的学生都学会竖式.
?习题设计】
1、竖式计算(5分钟)
师:同学们今天学习很投入,我们来小试一下伸手,看看你能用竖式准确地解答这题吗?
24×12 44×21
师:你想提醒同学做竖式计算应注意什么吗?哪容易错?
生:注意第二步一定要错位,别算错了。
2、密码门(3分钟)
师:淘气要邀请我们去他家了,可是他怎么了?遇到了什么问题?喔这是一个密码门,密码就是23×13的结果,等于92怎么不对呢?赶紧帮他算算密码是多少?
生:密码是第二步算错了,23应该错位写,因为它表示230,3写在十位上,2写在百位上得299。
师:你们眼力真好,一下帮淘气解决了问题,谢谢你们!赶紧进他家吧!
[设计意图]设计的练习,既让学生在巩固的基础上获得了提高,又克服了学生在新课后的疲倦感,课尽趣依浓。
3、总结(2分钟)
师:淘气的家真漂亮啊,今天真高兴,你有什么收获?
生1:我知道了两位数乘两位数的口算和竖式方法。
生2:我知道了用最简洁、方便的方法算两位数乘两位数(师:什么方法?)用竖式计算。
师:你们说得都很好,很高兴大家今天有这么多收获,下课!
(总结,让学生在交流收获的过程中,了解竖式计算的重要性。)
2024人教版三年级数学下册教案篇4
一、教学目标:
1、让学生体验计算方法的'多样化。
2、会运用两位数乘两位数的笔算。
二、教学过程:
1、创设学习情境,提出相应的问题。
2、让学生独立思考,尝试自己解决问题。
3、组织学生对所提问题小组讨论。
4、交流结果,小组一:12+12+......+12=288(24个12相加)
小组二:12x4x6=288
小组三:12x3x8=288
小组四:12x20+12x4=288
小组五:用竖式计算
5、方法归类:可以分为三类,第一类连加,第二类连成,第三类是把其中的一个乘数拆成两数的和或差。
6、总结出方法
7、研究笔算方法
8、巩固法则
9、总结所学内容,看看学生是否掌握了本节课知识点
2024人教版三年级数学下册教案篇5
一、教材:
1、教材内容:
义务教育新课标二年级数学上册第76页例2,例3,“做一做”及练习十七第1、4题。
2、教材分析:
“倍的认识”一节是在学习了7的乘法口诀后出现的。例2,是以三个小朋友用小棒摆正方形的情境,根据2个4根,3个4根与1个4根的关系,引出“一个数的几倍”的含义。例3,是引导学生用摆点子图的方式,建立“求一个数的几倍是多少”的计算思路,为解决问题构建“思维模式”。
3、教学目标:
(1)经历“倍”的概念的初步形成过程,体验“一个数的几倍”的含义。
(2)在充分感知的基础上建立“一个数的几倍是多少”的计算思路。
(3)培养学生操作、观察、推理能力及善于动脑的良好学习习惯和对数学的学习兴趣。
4、教学重点:经历“倍”的概念初步形成过程,建立“倍”的概念。
教学难点:建立“求一个数的几倍是多少”的计算思路。
5、教具、学具准备:
多媒体课件、小棒、图片。
二、教法:
根据以上分析,教学时,我主要采用电化教学、启发谈话、实物操作、合作交流等教学手段,创设一定的学习情境与和谐民主的学习氛围,自觉主动地获取知识。在教学中,充分发挥学生的主体地位,让他们通过动手摆小棒和图片,沟通新旧知识的联系,初步建立“倍”的概念,进而明白“一个数的几倍”的具体意义。
三、学法:
1、通过操作活动,让学生体验“一个数的几倍”的含义。
2、运用独立思考和合作交流相结合的学习方式,引导学生用简洁的语言有条理地表达自己的思考过程。
四、教学过程:
本课教学过程充分依靠教材的编排思路,挖掘教材的编排特点,分以下环节进行教学。
(一)创设情境,引入新课。
由于倍的概念比较抽象,学生不容易理解,所以本节课创设情境,请3名女同学,6名男同学上台,诱导启发,并说明:男同学是女同学的2倍。这节课就来学习“倍的认识”。使学生对教学内容有熟悉感,为学生创设一种用数学眼光分析观察日常生活问题的能力,激发学习兴趣。
(二)动手操作,探究新知。
首先让学生观察课件中的'3名小朋友,让学生自己发现,引导得出:2个4根及3个4根。在学生有了一定的感知后,再揭示“倍”的含义(3个4根也可以说成4的3倍)。接着让学生自己动手摆一摆,说一说,让他们感到“一个数的几倍”的存在,并体验到它的含义与作用,真正理解“一个数的几倍”具体描述的是什么内容。
其次,课件出示例3,先让学生自己尝试摆圆,第一行摆2个圆,第二行摆的是第一行的4倍。这时,学生很容易理解第二行摆的圆必须有4个第一行那么多,也就是4个2,所以要在第二行摆8个。学生脑海里建立起“第一行几个,第二行有多少个同样多的几个,就是几的多少倍”的表象,并得出用乘法计算的结论。
最后,通过师生的拍手游戏练习,将知识进一步抽象化,使学生在初步感知的基础上,建立“求一个数的几倍是多少”的思路,为下节课的解决问题构建“思维模式”。
(三)拓展延伸,巩固深化。
在这一环节中,书中的“做一做”几练习十七第1、4题,目的是巩固新知,加深对“倍”的概念的理解,理清“一个数的几倍”的具体意义,达到融会贯通。
(四)全课小结,激励评价。
让学生畅谈自己在本节课的表现和收获,体现了新的课程理念,给学生充分表现自己的机会。
?教学目标】
1.使学生知道24时计时法,会用24时计时法表示时刻。
2.初步理解时间和时刻的意义,学会计算简单的经过时间。
3.感受数学与生活的联系,激发学习的热情。
?重点难点】会用24时计时法表示时刻;学会计算简单的经过时间。
?教学过程】
一、认识24时记时法
1.出示情景图,提出问题:同学们,你们知道现在是几点吗?你认识时间吗?
引导学生进行讨论,交流信息。
2.提出问题:它们表示的是几时?
3.组织学生回答相关问题。
4.出示图片场景:
让学生根据场景中的的信息,讨论21:00是几时?并说说生活中,你在什么地方还建过这样表示时间的方法?
5.老师结合实物,帮助学生理解1天内,钟表的时针正好走两圈,一共是24小时,后学生动手操作,感受一天共有24小时。
介绍“24时计时法”在一天里,钟表上的时针正好走两圈,共24小时。通常采用从0时到24时的计时法,叫做24时计时法。
6.了解一日24小时的由来。
二、学习24时计时法的表示方法
1.师出示钟面,引导学生观察钟面上有什么?说说钟面内圈的数表示的是什么?外圈的数表示的是什么?
2.学生观察自己的钟面,讨论外圈的数和内圈的数有什么关系?
3.老师拨时针,让学生说说这个时间怎样表示?(凌晨1时,中午十二时)
4.师再拨时针,让学生学习下午1时到晚上12时用24时计时法的方法(下午1时,下午5时,晚上9时,晚上12时)说说是怎样想的?
5.例题分析:
普通计时法上午7时中午12时下午4时下午6时40分 晚上9时12分
24时计时法19时 23时40分
练后想一想:普通计时法与24时计时法之间有什么联系与区别?
6、同桌互动,一个说一种表示方法,另一个同学回答另一种表示方法。
三、练习巩固
1.学生独立完成:连一连后交流各自的想法。
2.回答问题:
(1)下面的说法正确吗?(打手势)
①18时就是下午8时。
②工人上午8:00上班,下午16:30下班
③深夜12时就是24时,也是第二天的0时。
(2)师出示一个钟面,指针指着一个数(8或10)
想一想:现在钟面上所表示的是几时?”(可能早上8时,也可能晚上8时。)
四、课堂总结
这节课你学到了什么?还有什么疑问?
教学目标:
1、知识与技能:使学生在具体的统计活动中认识复式统计表,能根据收集、整理的数据填写统计表,并能根据统计表中的数据进行简单的分析。
2、过程与方法:使学生在认识、填写、分析复式统计表的过程中,进一步理解统计方法,发展统计观念。
3、情感态度与价值观:通过学习,使学生进一步体会统计与现实生活的密切联系,感受学习的乐趣,树立学好数学的信心。
教学重点:
使学生认识复式统计表,会根据复式统计表解决一些简单的实际问题。
教学难点:
通过数据的整理和分析,使学生能对数据作出简单的判断和预测,并会制作复式统计表。
教学过程:
一、创设情境,知识链接
最近天气越来越热了,喜羊羊去摘了好多水果给羊村的孩子们,瞧!你能根据这幅图提出数学问题吗?
为了能更好的统计数据,我们可以利用单式统计表。
提问:对比一下,单式统计表有什么特点。
二、探究新知,理解概念
1、收集数据同学们一起收集我们班同学最喜欢的课外活动。再进行整理现场组织:请两个小助手,一名同学数,一名同学写。
先完成男生最喜欢的活动,再完成女生最喜欢的活动。
?设计意图】联系生活实际,以学生的兴趣爱好为出发点,创设了一个调查学生最喜欢的活动情境,不仅激发了学生的兴趣,也让学生初步感受到统计的必要性,为复式统计表的学习做好铺垫 2、分析数据请同学们比较两张表。每张表统计的活动都是一样的。我们可以把这两张表合成一张表。
同学们靠自己多次尝试,教师引导多次修改,最终合成一张完整的复式统计表。
分析统计表里的数据,提问:你能得到什么信息,有什么建议。
?设计意图】本环节是新课教学的主体,在认识、填写、分析复式统计表的过程中,进一步理解统计方法,培养数据分析观念。单式统计表入手,把握学生知识的起点,通过对比分析,引发学生内在的认知冲突,从而产生合并创造一个更简洁的表格的欲望,真切地感受到复式统计表的优越性和必要性,体会数学学习的价值。帮助学生分析数据背后的信息。
3、对比表格请同学们对比单式统计表和复式统计表,你发现了什么?
?设计意图】让学生通过对比,概括出复式统计表的优势。
三、巩固运用,拓展提升1.教材38页练习八第1题。
思考:怎样阅读表格?引导学生根据表格结构有序地阅读信息,在此基础上完成本题辨析。
2、创造统计表。
分小组统计三名同学的基本信息,再根据这些信息绘制一张复式统计表。
?设计意图】通过分层练习,由浅入深,循序渐进地巩固运用复式统计表,在收集、整理、分析数据的过程中,进一步体会统计与现实生活的密切联系,感受学习数学的乐趣,树立学好数学的信心。
四、回顾总结,积累经验1.回顾课堂,畅谈收获这节课我们研究了什么问题?你有什么收获?
信息单式统计表复式统计表统计项目一项多项数据一目了然方便对比特点表类
教学目标
1使学生经历多位数乘一位数(不进位)的计算过程。
2、初步学会乘法竖式的书写格式,了解竖式每一步计算的含义。
3、培养学生独立思考和合作交流的学习方法和积极的学习态度,体验计算方法的多样化。
教学重点、难点 重点:学会乘法竖式的书写格式,掌握计算方法。
难点:培养学生独立思考和合作交流的学习方法,体验计算方法的多样化
一、提出问题
(出示主题图)
师:元旦到了。小明、小华和小英正在用彩笔画画,准备布置“迎接元旦”专刊。他们要用美丽鲜艳的彩色图画歌颂伟大的'祖国,迎接新年的到来。从这幅图画中,你能提出哪些用乘法计算的数学问题呢?引导学生提出:他们每人都有一盒彩笔,每盒12枝。他们一共有多少枝彩笔呢?
先请同学们估算一下,3盒大约有多少枝彩笔?
教师提问:如果我们要知道准确的枝数,该怎么办呢?
小精灵问了:怎样算一共有多少枝彩笔?
二、探讨交流
请同学们说一说:(1)用什么方法计算?怎么列式?(2)12×3表示什么意思?(3)这道题与我们以前学过的乘法计算有什么不同?
教师提问:这道题该怎样算呢?
让小组内每个同学先思考3分钟,在纸上算算看,能不能算出来。也可以摆出小棒(或其他学具)或画画图等。如果能想出几种算法的,就把几种算法都写出来。
完以后,在小组里交流,把自己的算法说给同组的其他同学听。
小组长归纳一下本小组一共想出了哪几种算法。这时教师巡回了解各组的情况,尤其要鼓励学习有困难的学生积极参与小组的活动。
全班汇报。由各小组的代表向全班同学汇报自己小组的各种算法,教师将其板演在黑板上。
三、分类评价
教师提出要求:现在同学们想出了这么多种算法,我们能不能把这些算法分分类,看看一共有几种思路。
估计学生的算法可能有如下几类:
1、摆学具求得数。
引导学生摆。因为一个因数是12,所以一行摆1捆零2根;因为另一个因数是3,所以摆3行,一共摆了3捆零6根,也就是得36。
2、画图求出得数。
例如画出如下的图:
3、连加法。
12+12+12=36 4、数的分解组成。
10×3=30
2×3=6
30+6=36 5、拆数法。(转化成表内乘法) 8×3=24
或7×3=21
或6×3=18 4×3=12
5×3=15
18+18=36 24+12=36
21+15=36
评价各种算法,组织学生议论,每一种算法是怎么算的,各有什么适用范围。
1、摆学具和画图也是一种很好的方法,但我们学了数学以后就应尽量使用计算的方法来算。
2、根据乘法的含义用连加的方法也是可以的,但是如果因数的个数比较多,算起来就比较麻烦。
3、把一个因数分解成几个十和几个一,分别与另一个因数相乘,再把几个乘积加起来。这种方法不管因数是几都能算。
4、把一个因数拆成几个一位数,再分别和另一个因数相乘,然后把几个乘积相加,这种方法不管因数是几也都能算,但有时也比较麻烦。如25×6=9×6+8×6+5×6+3×6等。
四、介绍竖式
从刚才议论的结果来看,用数的分解组成方法来算比较简便。那么我们能不能把这三个算式像加法竖式那样合并成一个竖式呢?下面就请大家打开课本第74页看看小英是怎样列出乘法竖式的。
先出示有部分积相加的竖式,再出示简便竖式,并说明为什么可以写成简便竖式。
学生在练习本上完成“做一做”的三题,教师巡视了解情况。如有发现错误,指导订正。
五、巩固练习。
学生完成练习十六的作业。每道题先让学生估算,然后再用竖式计算。
第1题让学生独立完成后,说说为什么是用乘法计算。
第2题让学生独立完成后,同桌互相检查并说说自己是怎么算的。
第3题让学生独立完成后,再交流这道题有哪几种算法。
六、小结
这节课你学到了什么?在笔算时你认为要注意什么?
教学内容:
教材第44-45页练习九7-12题
教学目标:
1、巩固复习整十、整百数乘整十数,两位数乘整十数的口算方法和两位数乘两位数的估算方法。
2、运用所学的知识灵活地解决问题。
教学重点:
正确、熟练的进行口算和估算,逐步提高口算和估算的正确率。
教学难点:
运用所学的知识正确解决问题。
教学准备:
多媒体课件 口算卡片 红旗
教学过程:
一、学前准备
基础知识练习。
1、70×7060×9080×5011×4030×8020×7040×6031×20
2、学生们完成后,选两行学生按顺序每人一题订正结果,教师要统计学生口算的正确率,对做得又对又快的学生及时鼓励表扬,有错误的学生要让其说出是哪道题错了,教师给予板书,帮助学生改正。通过练习让学生看到自己的问题,能够从中了解到好的计算方法,这样可以使自己的计算更准确、更迅速。
3、老师选两个学生当代表到前面比赛,其他学生在教材上完成,到黑板上的学生按箭头的顺序分别把答案写在题目的两边,做得又对又快的学生夺得小红旗。
让学生一起订正,在教材上全部做对的学生都可以得到一面小红旗。(通过比赛让学生明白看,一味只图快,做的题不正确,是得不到红旗的)
二、探究新知
1、运用口算解决问题。
引导学生看教材第44页的第7题,这是一道图文结合的题。引导学生认真看题中的文字,还要认真观察图,看图中都告诉了我们哪些信息。说一说,你从题中都知道了什么。
老师引导学生想
(1)题中让我们解决什么问题?
(2)解决这三个问题需要哪些数据信息?
(3)在充分分析题意之后,让学生独立完成,然后交流解答过程,订正结果。
例:50×11=550(千克)
答:李红家的蚕子可产蚕550千克。
50×80=4000(千克)
答:李家村的蚕子可产茧4000千克。
18×50=900(元)
答: 50千克茧能卖900元钱。
2、小象出生后,体重平均每年增加200千克。20年后这头大象重多少千克?
(1)让学生完整地回答出此题需解决的问题和解决问题需要的信息数据。学生之间互相订正,互相补充。
(2)引导学生独立完成,集体订正计算过程和结果。
例:200×20=4000(千克)
4000=100=4100(千克)
答:20年后这头大象重4100千克。
三、课堂作业新设计
1、口算。
2、小明要买12本书,每本书19元,小明大约要带多少元钱?
3、教材第45页的第10题。
四、思维训练
1、不计算,把估算结果写在括号里。
100×24200×3032×1074×10020×4060×506×10010×70012×3034×440×6+857×0+57
2、李叔叔平均每天组装19辆自行车,9月份大约共组装多少辆自行车?
3、海龟出生后,体重平均每年增加100克。40年后它的体重将增加到4080克。小海龟刚出生时有多少克?
教学反思:
通过本节课的练习,在练习中使学生巩固复习了整十、整百数乘整十数,两位数乘整十数的口算方法和两位数乘两位数的估算方法。学生能熟练的进行口算和估算,逐步提高口算和估算的正确率。尤其是使学生能够运用所学的知识灵活地解决问题。总结出了实际问题中隐含的数量关系:单价x数量=总价
设计说明
1、关注学生已有的生活经验。
?数学课程标准》强调关注学生已有的生活经验,把已有的经验和要学习的知识紧密结合。因此,本设计在学习新知之前鼓励学生说一说:关于年、月、日的知识,你已经知道了哪些?一是投石问路,可以较好地了解学生的认知起点;二是能充分挖掘学生身上的资源;三是创设一个关于年、月、日的知识情境,在不经意间为引发学生的疑惑作铺垫。
2、创设情境,联系生活,激发兴趣。
本设计创造性地使用教材,以学习生活中的数学、用数学知识解决生活中的简单问题为基本理念,从新课的引入到课后的练习,都将数学与生活紧密联系在一起,体现“小课堂、大社会”,让学生体会数学与生活的联系,激发学生学习数学的兴趣。
3、注重观察,引导发现,培养能力。
本设计通过年历卡及相关统计表,让学生在观察和发现中掌握年、月、日及大月、小月等知识,这样既激发了学生的参与兴趣,又让学生感受到自己是一个发现者、探究者,使学生在自我探究、自我发现中获取新知,成为学习的主人。
课前准备
教师准备 ppt课件
学生准备 20xx年、20xx年的年历
教学过程
⊙创设情境,引入新课
1、关于年、月、日的知识,你已经知道了哪些?
预设
生1:一年有12个月。
生2:有的年份有365天,有的年份有366天。
2、说一说记忆中美好的或有特殊意义的日子。(生自由汇报)
3、观察教材76页主题图,说一说年历上标注了哪些特别的日子。在这些特别的日子里,都用到了哪些时间单位?(年、月、日)这就是今天我们要学习的内容。(板书课题:年、月、日)
设计意图:选择学生感兴趣、熟悉的素材作为引子,以特别的日子为切入点,引导学生用数学的眼光观察,让学生充分感受到学习内容就在身边,使学生全身心地投入到数学活动中去。感受数学学习的价值,有效地激发学生的求知欲,拓展学生的思维。同时建立新旧知识的联系,加深对时间单位的理解,为下面的新知教学作铺垫。
⊙亲自实践,探究新知
1、教学例1。
观察20xx年、20xx年的年历。(课件出示)
思考:
(1)一年有多少个月?
(2)一年中哪几个月份有31天?哪几个月份有30天?
(3)2月有多少天?
2、师根据学生的回答板书。
(1)一年有12个月。
(2)一年中1月、3月、5月、7月、8月、10月、12月有31天,4月、6月、9月、11月有30天。
(3)20xx年的2月有28天,20xx年的2月有29天。
3、小结:我们把有31天的月份称为大月;有30天的月份称为小月;2月是一个特殊的月份,它的天数和其他的月份都不相同,所以2月既不是大月,也不是小月。
设计意图:通过认真观察20xx年和20xx年的年历,让学生自主发现并总结大月、小月的天数及2月的特殊性,提高学生的观察能力和归纳能力。
4、记忆大月和小月的方法。
(1)拳头记忆法。(课件演示)
①伸出左手,手背面向自己,握住拳头。从右边第一个凸起处开始数起,第一个凸起处是一月,凹下的地方是二月,接着以此类推数到七月,转回来,从数一月的地方接着数八月,一直数到十二月。凸起的地方就为大月,有31天;凹下的地方,除了2月,其他都是小月,有30天。
②请大家边看边实践。
(课件重复演示,学生实践)
(2)歌诀记忆法。
一、三、五、七、八、十、腊,三十一天永不差。
说明:腊,这里指腊月,一般指农历十二月,在这里代表公历十二月。
设计意图:利用多媒体教学,更加符合学生的思维水平。用歌诀帮助记忆,让课堂教学的形式“活”起来。
5、知识拓展:一年中,为什么有7个大月,4个小月?
师:每年大月有7个,小月有4个,这其中有一段有趣的历史小故事。(播放录音:大月、小月的由来)
(学生恍然大悟,原来这都是人为规定的)
设计意图:大月、小月的特殊安排使学生心中有一个大大的“?”。回溯历史,既解疑释惑,又丰富和拓宽了学生的视野,使数学学习渗透着浓浓的数学文化。以英文august(八月)与国王的名字(奥古斯都)印证八月的演变,令学生折服