古典舞把上蹲教案8篇
教案是教师教学的重要依据和指导工具,优秀的教案可以帮助教师更好地调整和优化教学资源和教学环境,淘范文小编今天就为您带来了古典舞把上蹲教案8篇,相信一定会对你有所帮助。
古典舞把上蹲教案篇1
一、教学目标:
1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;21世纪教育网版权所有
(2)掌握古典概型的概率计算公式:p(a)=
(3)掌握列举法、列表法、树状图方法解题
2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.-2-1-cnjy-com
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.
二、重点与难点:
1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数.
教学设想:
1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.21教育名师原创作品
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的.结果,即标号为1,2,3…,10.
师生共同探讨:根据上述情况,你能发现它们有什么共同特点?
2、基本概念:
(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本p121~126;
(2)古典概型的概率计算公式:p(a)=
议一议】下列试验是古典概型的是 ?
①. 在适宜条件下,种下一粒种子,观察它是否发芽.
②. 某人射击5次,分别命中8环,8环,5环,10环, 0环.
③. 从甲地到乙地共n条路线,选中最短路线的概率.
④. 将一粒豆子随机撒在一张桌子的桌面上,观察豆子落下的位置.
古典概型的判断
1). 审题,确定试验的基本事件.
(2). 确认基本事件是否有限个且等可能
什么是基本事件
在一个试验可能发生的所有结果中,那些不能再分的最简单的随机事件称为基本事件。(其他事件都可由基本事件的和来描述)
下面我们就常见的:
抛掷问题,抽样问题,射击问题.
探讨计数的一些方法与技巧.
抛掷两颗骰子的试验:
用( x,y )表示结果,
其中x表示第一颗骰子出现的点数?
y表示第二颗骰子出现的点数.
(1)写出试验一共有几个基本事件;
(2)“出现点数之和大于8”包含几个基本事件?
规律总结]:要写出所有的基本事件,常采用的方法有:列举法、列表法、树形图法 等,但不论采用哪种方法,都要按一定的顺序进行、正确分类,做到不重、不漏.
方法一:列举法(枚举法)
[解析】用(x,y)表示结果,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,则试验的所有结果为:
?结论】:(1)试验一共有36个基本事件;
(2)“出现点数之和大于8”包含10个基本事件.
方法二 列表法
坐标平面内的数表示相应两次抛掷后出现的点数的和,基本事件与所描点一一对应.
方法三 :树形图法
三种方法(模型)总结
1.列举法
列举法也称枚举法.对于一些情境比较简单,基本事件个数不是很多的概率问题,计算时只需一一列举即可得出随机事件所含的基本事件数.但列举时必须按一定顺序,做到不重不漏.
2.列表法
对于试验结果不是太多的情况,可以采用列表法.通常把对问题的思考分析归结为“有序实数对”,以便更直接地找出基本事件个数.列表法的优点是准确、全面、不易遗漏
3.树形图法
树形图法是进行列举的一种常用方法,适合较复杂问题中基本事件数的探究.
抽样问题
?例】? 一只口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出两个球.
(1)共有多少个基本事件?
(2)两个都是白球包含几个基本事件?
[解析]:(1)采用列举法:分别记白球为1,2,3号,黑球为4,5号,有以下10个基本事件.
(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),
(2,5),(3,4),(3,5),(4,5)
(2)“两个都是白球”包括(1,2),(1,3),(2,3)三种.
?例】 某人打靶,射击5枪,命中3枪. 排列这5枪是否命中顺序,问:
(1)共有多少个基本事件? .
(2)3枪连中包含几个基本事件? .
? (3)恰好2枪连中包含几个基本事件?
[例3】 一个口袋内装有大小相等,编有不同号码的4个白球和2个红球,从中摸出3个球.
问:(1)其中有1个红色球的概率是 .
? (2)其中至少有1个红球的概率是 .
课堂总结:
1. 关于基本事件个数的确定:可借助列举法、列表法、
树状图法(模型),注意有规律性地分类列举.
2. 求事件概率的基本步骤.
(1)审题,确定试验的基本事件
(2)确认基本事件是否等可能,且是否有限个;若是,则为
古典概型,并求出基本事件的总个数.
(3)求p(a)
?注意】当所求事件较复杂时,可看成易求的几个互斥事件的和,先求各拆分的互斥事件的概率,再用概率加法公式求解
练习
1、学习指导例1(1)、活学活用;(第76页)
2、随堂即时演练第5题(第78页)
古典舞把上蹲教案篇2
教材分析
(一) 教材地位、作用
?古典概型》是高中数学人教a版必修3第三章概率的内容,教学安排是2课时,本节是第一课时。是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型
也是后面学习条件概率的基础,它有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,所以在概率论中占有相当重要的地位。
(二)教材处理:
学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。通过对问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算公式。对典型例题进行分析,以巩固概念,掌握解题方法。
二、三维目标
知识与技能目标:
(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;
(2)理解古典概型的概率计算公式 :p(a)=
(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
过程与方法目标:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。
情感态度与价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想;结合问题的现实意义,培养学生的合作精神.
三、 教学重点与难点
1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
2、难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数
四、教法与学法分析
教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
五、教学基本流程
六、教学设计
教学设计 设计意图 师生互动 1 课前模拟试验:
①掷一枚质地均匀的硬币的试验;
②掷一枚质地均匀的骰子的试验。
问题1 用模拟试验的方法来求某一随机事件的概率好不好?为什么?
问题2 分别说出上述两试验的所有可能的实验结果是什么?每个结果之间都有什么关系? 模拟实验的目的是创建与新课内容相关的实验模型,把问题具体化,过渡到新课时自然有序,同时也培养了学生的动手能力和与人合作的能力。
问题1的引出,激发学生的求知欲望和学习兴趣
让学生思考讨论问题2,直接进入新课,把课堂交给学生。
学生——实验、思考、讨论
老师——利用试验给出所有可能出现的结果即基本事件。
老师——加以引导与启发,利用基本事件的关系发现基本事件的特点。
学生——归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力 2 问题一:什么是基本事件?基本事件有什么特征?
例从字母a,b,c,d中任意选出两个不同字母的试验中,有哪些基本事件?
练习(1)在掷骰子的试验中,事件“出现偶数点 ”是哪些基本事件的并事件?
(2)先后抛掷两枚均匀的硬币的试验中,有哪些基本事件?
问题二:上述试验和练习的共同特点是什么?
(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等 为了引出古典概型的概念,设计了练习。通过列举法列举基本事件,进一步理解与巩固基本事件的概念;然后设疑:“类比试验与练习中基本事件有什么共同点?”,通过问题的解决让学生体验由特殊到一般的数学思想方法的应用,从而引出古典概型的概念。 老师——引导学生列举时做到不重复、不遗漏
学生——列举出基本事件
老师——引导学生找出共性。我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。 3 思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率又如何计算?
观察:掷硬币与掷骰子的试验完成 例1 .(1)求在抛掷一枚硬币观察哪个面向上的试 验中“正面朝上”和“反面朝上”这2个基本事件的概率?
(2)在抛掷一枚骰子的试验中,出现“1点”、“2点”、“3点”、“4点”、“5点”、“6点”这6个基本事件的概率?
(3)在掷骰子的试验中,事件“出现偶数点”发生的概率是多少?
总结:你能从这些试验中找出规律,总结出公式吗?
了解古典概型的概念之后,就要引领学生探究概率公式。为了突破这个重点我设计了3个环节
首先,让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。
其次,公式的推导是在老师的启发引导下,让学生带着好奇心去观察数学模型。(模型演示)多媒体引入课堂为学生提供了广阔的空间,通过直观感受,使学生对规律的总结快速而准确。
最后,学生在回答例1问题的过程中,逐步感受由特殊性演变到一般性,最终得出结论。过程自然而有序,让学生体验到认知的自然升华,感受数学美妙的意境。 老师——提出问题
古典舞把上蹲教案篇3
一、教学目标:
1、通过基本功软、开度的展示,树立学生的自信,并为课堂作好准备活动。
2、通过学习古典舞身韵组合,培养学生的韵律感和节奏感。
3、通过即兴舞蹈,发挥学生的创造力和对音乐的感受能力。
二、课
时:2学时
三、教材内容分析:
中国古典舞身韵包括元素和短句部分。元素是古典舞身韵教材中最基本、最单纯的动律,主要有提、沉、冲、靠含、腆、移等,从元素逐渐到动作的深化练习,同时辅以手、头、脚的基本位置的规律和眼神的配合,体现中国古典舞“拧、倾、圆、曲”的动作特点和审美风格。短句训练是元素向动作过渡的桥梁。这部分训练主要是增强肢体的协调性、适应性和表现性,同时加强肢体的流动意识及提高肢体表现的动作旋律性。
四、教学过程:
1、压腿(前压腿、旁压腿、后压腿)
2、踢腿(前踢腿、后踢腿)
3、挑胸腰接控腿把下动作:
1、劈叉(竖叉、横叉)
2、腰部(旋腰、后弯腰、后腰贴脸)
3、前手翻、侧手翻
(二)新课内容
1、由教师示范古典舞身韵——盘腕
2、分解动作学习
3、跟音乐完整跳一次。
4、分组展示,学生互评。
(三)即兴舞蹈
先放一遍音乐让学生熟悉音乐风格,以个人或双人的形式跟音乐即兴舞蹈。
五:小结。
古典舞把上蹲教案篇4
教学背景分析
(一)本课时教学内容的功能和地位
本节课内容是普通高中课程标准实验教科书人教a版必修3第三章概率第2节古典概型的第一课时,主要内容是古典概型的定义及其概率计算公式。
从教材知识编排角度看,学生已经学习完随机事件的概念,概率的定义,会利用随机事件的频率估计概率,学习了古典概型之后,学生还要学习几何概型,古典概型的知识在课本当中起到承前启后的作用。古典概型是一种特殊的概率模型。由于它在概率论发展初期曾是主要的研究对象,许多概率的最初结果也是由它得到的,因此,古典概型在概率论中占有重要地位,是学习概率必不可少的。
学习古典概型,有利于理解概率的概念,有利于计算事件的概率;为后续进一步学习几何概型,随机变量的分布等知识打下基础;它使学生进一步体会随机思想和研究概率的方法,能够解决生活中的实际问题,培养学生应用数学的意识。
(二)学生情况分析(所授对象接受知识情况和对本教学内容已知的可能情况)
1、学生的认知基础:
学生在初中已经对随机事件有了初步了解,并会用列表法和树状图求等可能事件的概率。在前面的随机事件的概率一节中,已经掌握了用频率估计概率的方法,即概率的统计定义。了解了事件的关系与运算,尤其是互斥事件的概念,以及概率的性质和概率的加法公式。这些知识上的储备为本节课的基本事件的概念理解和古典概型的概率公式的推导打下了基础。学生在前面的学习中熟悉了大量生活中的随机事件的实例,对于掷硬币,掷骰子这类简单的随机事件的概率可以求得。
2、学生的认知困难:
我调查了初中的数学老师,和高一的学生对这部分知识的理解,发现学生初中学习了等可能事件的概率,对简单的等可能事件可计算其概率,但没有模型化,所以造成学生只知其然,不知其所以然。根据以往的教学经验,如果不对概念进行深入的理解,学生学完古典概型之后,还停留在原有的认知水平上,那么,由于概念的模糊,会导致其对复杂问题的计算错误。
教学目标
1、学生通过对大量生活实例的对比分析,了解基本事件的特点,理解古典概型的概念、特征及其计算公式。
2、学生经历从生活实例抽象数学模型的过程,体现了从具体到抽象、从特殊到一般的辩证唯物主义观点;学生能够用随机的观点理解世界。
3、学生通过各种有趣的,贴近生活的实例,体会数学来源于生活,感受如何用数学去解释现实世界中的现象,解决生产生活中的问题。
教学重、难点及分析
本节课的重点是通过实例理解古典概型的两个特征及其概率计算公式。
由于学生已经在初中学过等可能事件的概率,对于古典概型的概率计算公式的理解和应用并不难,因此,我认为本节课的难点是对基本事件的概念的理解和对古典概型的两个特征的准确理解。
教学过程
由于我的问题开放性比较大,所以这里只能预设一下过程,实际教学过程中,要根据学生的回答情况做相应的调整。
1、提出问题:
问题1、生活中你能举出哪些随机事件的例子?
对于这个问题,学生可能举的例子非常多,例如:掷一枚质地均匀的硬币出现正面朝上;掷一枚质地均匀的骰子出现1点;汽车到十字路口正好遇到红灯;从围棋罐中摸出白子;买一张彩票中奖;射击正好中10环;种一粒种子正好发芽。等等。
如果学生举例困难,老师可以引导学生从某个生活场景中提取例子,比如上学路上,体育比赛当中,扑克牌等等。
我的设计意图是让学生从生活中举出大量随机事件的例子,继而可以从中分析研究,归纳出古典概型的特征。让学生举例,可以激发学生的求知欲,吸引学生主动探究。另一方面,也让学生从中体会到数学是解决实际问题的工具。
因为贯穿始终都要用到大家举出的实例,所以,这些实例当中应当含有古典概型的例子,也包括了不是古典概型的典型例子,如果学生没能举出,在学生举出实例之后,我会根据学生的例子情况进行适当的补充。必须具备的例子:掷硬币,掷骰子,种一粒种子,等车时间问题,向圆盘扔黄豆。
2、分析实例:
这一环节我想先让学生通过其已有的经验去求这些随机事件的概率。可能有的学生会用前面一节学习的统计方法,用频率去估计概率,对于这种方法,要给予肯定,同时要启发学生这种方法的缺点是费时费力,有时由于条件所限,也比较难操作。也有学生会利用初中求等可能事件概率的方法,求得一部分随机事件的概率,对于这一方法,先肯定。我的设计意图是,让学生联系前面所学,从其已有的认知基础出发,去感受新知。
在求概率的过程中,学生会发现有些随机事件的概率求出来了,有些却不能求出来,举例:
掷一枚质地均匀的硬币出现正面朝上的概率是1/2;
掷一枚质地均匀的骰子出现1点是1/6;
古典舞把上蹲教案篇5
本文题目:高三数学复习教案:古典概型复习教案
?高考要求】古典概型(b); 互斥事件及其发生的概率(a)
?学习目标】:1、了解概率的频率定义,知道随机事件的发生是随机性与规律性的统一;
2、 理解古典概型的特点,会解较简单的古典概型问题;
3、 了解互斥事件与对立事件的概率公式,并能运用于简单的概率计算.
?知识复习与自学质疑】
1、古典概型是一种理想化的概率模型,假设试验的结果数具有 性和 性.解古典概型问题关键是判断和计数,要掌握简单的记数方法(主要是列举法).借助于互斥、对立关系将事件分解或转化是很重要的方法.
2、(a)在10件同类产品中,其中8件为正品,2件为次品。从中任意抽出3件,则下列4个事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是 .
3、(a)从5个红球,1个黄球中随机取出2个,所取出的两个球颜色不同的概率是 。
4、(a)同时抛两个各面上分别标有1、2、3、4、5、6均匀的正方体玩具一次,向上的两个数字之和为3的概率是 .
5、(a)某人射击5枪,命中3枪,三枪中恰好有2枪连中的概率是 .
6、(b)若实数 ,则曲线 表示焦点在y轴上的双曲线的概率是 .
?例题精讲】
1、(a)甲、乙两人参加知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?
(2)甲、乙两人中至少有一人抽到选择题的概率是多少?
2、(b)黄种人群中各种血型的人所占的比例如下表所示:
血型 a b ab o
该血型的人所占的比(%) 28 29 8 35
已知同种血型的人可以输血,o型血可以输给任一种血型的人,任何人的血都可以输给ab型血的人,其他不同血型的人不能互相输血.小明是b型血,若小明因病需要输血,问:
(1) 任找一个人,其血可以输给小明的概率是多少?
(2) 任找一个人,其血不能输给小明的概率是多少?
3、(b)将两粒骰子投掷两次,求:(1)向上的点数之和是8的概率;(2)向上的点数之和不小于8 的概率;(3)向上的点数之和不超过10的概率.
4、(b)将一个各面上均涂有颜色的正方体锯成 (n个同样大小的正方体,从这些小正方体中任取一个,求下列事件的概率:(1)三面涂有颜色;(2)恰有两面涂有颜色;
(3)恰有一面涂有颜色;(4)至少有一面涂有颜色.
?矫正反馈】
1、(a)一个三位数的密码锁,每位上的`数字都可在0到10这十个数字中任选,某人忘记了密码最后一个号码,开锁时在对好前两位号码后,随意拨动最后一个数字恰好能开锁的概率是 .
2、(a)第1、2、5、7路公共汽车都要停靠的一个车站,有一位乘客等候着1路或5路汽车,假定各路汽车首先到站的可能性相等,那么首先到站的正好是这位乘客所要乘的的车的概率是 .
3、(a)某射击运动员在打靶中,连续射击3次,事件至少有两次中靶的对立事件是 .
4、(b)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%,求抽验一只是正品(甲级)的概率 .
5、(b)袋中装有4只白球和2只黑球,从中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.
?迁移应用】
1、(a)将一粒骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率是 .
2、(a)从鱼塘中打一网鱼,共m条,做上标记后放回池塘中,过了几天,又打上来一网鱼,共n条,其中k条有标记,估计池塘中鱼的条数为 .
3、(a)从分别写有a,b,c,d,e的5张卡片中,任取2张,这两张上的字母恰好按字母顺序相邻的概率是 .
4、(b)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率是 .
5、(b)将甲、乙两粒骰子先后各抛一次,a,b分别表示抛掷甲、乙两粒骰子所出现的点数.
(1)若点p(a,b)落在不等式组 表示的平面区域记为a,求事件a的概率;
(2)求p(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.
古典舞把上蹲教案篇6
一、指导思想:
舞蹈是以经过提炼,组织和艺术加工的人体动作为主要表现手段,表达人们的思想感情,反映社会生活的一种艺术形式。舞蹈的基本要素是动作的姿态、节奏和表情。舞蹈作为教育的内容和手段,不仅可以培养教育对象具有健美的身体姿态,培养动作的协调性、节奏感,而且可以抒发和表达感情,加强相互交往,美化生活,培养良好的道德品质。
二、教学任务:
1、通过舞蹈基本知识的讲授和教学,使学生初步了解舞蹈基础理论,常用术语,并能在舞蹈学习实践中应用。
2、舞蹈基训部分,即对学员进行基本能力的训练,如:发展学员身体各部分肌肉的能力,训练关节的柔软性,控制身体活动的能力、灵活性和稳定性,以及跳、转、翻等各种技巧。本学期舞蹈基训主要是中国古典的基本手型、脚型、手位、脚位以及手臂的基本姿态。
三、授课时间:
每周一至周五中午、周六上午、周日下午
四、授课地点:
音乐教室
五、内容安排:
第1-2周:中国古典舞基本手型第3周:中国古典舞基本脚型第4周:中国古典舞基本手位第5周:中国古典舞基本脚位第6-7周:单手基本动作第8-9周:双手配合动作
第11-14周:身体各部分中间活动训练第15-16周:以上基本动作练习舞蹈队活动计划
舞蹈教育是艺术教育。掌握舞蹈的基础理论知和舞蹈的基本技能,可以训练学生感受美、体现美的能力。以活跃少年儿童的生活情趣,促进身心健康的发展。由于少年儿童舞蹈的主题、体裁、表现形式丰富多彩,在学习、排练、表演的过程中,表现力和创造力的方面,都有着积极的意义和功能。
本学期我从低年纪学生开始选拔,通过舞蹈基础的教授和教学,使学生初步了解舞蹈进本动作,根据学生的特点,初步掌握儿童舞和进本动作、基本能力、训练过节柔软性,控制身体活动的能力,灵活性和稳定性以及跳、转、翻等各种技巧,使学生身体运动更符合舞蹈规律的要求,为上台表演打下坚实的基础。如:通过对学员基本能力的训练,使其身体运动更符合舞蹈规律的要求,以适用各种类型动作,发展身体个部分的能力,灵活性和稳定性以及跳、转,翻各种技巧动作。
通过作品排练使学生尽可能地掌握部分代表性民族舞蹈,为随时扮演各种人物形象作好准备。活动时间:每周六活动地点:舞蹈教室活动内容:
一、身体基础训练
1、基本脚位
2、上身练习
头部、膀子、胸腰、腿部、胯腰、后腰
3、现代舞训练
仰卧起坐、蝶式、胯部练习
4、踢腿:正踢、旁踢、后踢
5、把上基本训练
二、基本技巧练习:
1、转——原地转、移动转、单腿转
2、小跳、大跳
三、作品训练:
学内容:扶把练习组合练习教学目的
准备活动:以各关节为主,目的在于预防和减少关节损伤,增强各关节肌肉韧带的弹性和灵活性,促使大脑中枢神经兴奋、克服人体活动上的生理惰性,振奋精神。扶把练习:通过扶把练习掌握身体各部位规范的单一动作,克服站立时的腰部无力向下的毛病,增强躯干的力量,增加腿部肌肉的力度、开度及灵活性。
组合练习:通过动作的单一练习和组合,使学生在学习的过程中增加学习的积极性和动作的协调性,是教学达到良好的效果。教学过程准备活动:
1、胸腰练习,教师逐个活动
2、进行腿部前、旁、后的韧带和肌肉练习中间练习,手位组合复习,结合舞台方位、呼吸、音乐等练习扶把练习
1、擦地
2、小踢腿
3、吸弹撩腿学习新课胯掖腿练习
5——8拍右手扶把,左手打开成七位,站成小八字脚1——8左脚旁吸腿。
2——8勾脚,脚跟向旁蹬出成45度3——8左脚硼脚面4——4左脚成旁吸腿5——8左脚放至右脚旁还原
反复共做二次,再转身换成相反的方向。学习组合《雪绒花》
1、学习华尔滋前、旁、后的运动
2、复习动作
3、结合音乐整体练习
课堂小结总结本堂课的优劣之处,向学生提出希望。
活动教材:自己准备
古典舞把上蹲教案篇7
一,教材的地位和作用
本节课是中数学3(必修)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,文科生不学习排列组合的情况下教学的 。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
二,教学目标
1、知识目标
(1)理解古典概型及其概率计算公式,
(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
2、能力目标
根据本节课的内容和学生的实际水平,通过抽牌游戏让学生理解古典概型的定义,引领学生探究古典概型的概率计算公式,归纳出求基本事件数的方法-列举法。
3 、情感目标
树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性的理解世界, 使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
三,教学的重点和难点
重点:理解古典概型的'概念及利用古典概型求解随机事件的概率。
难点:如何判断一个试验的概率模型是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四,教具
计算机多媒体,黑板,粉笔,教棒
五,教学方法
探究式与讲授式相结合
六,教学过程
前面我们学习了随机事件及其概率,今天我们将学习古典概型,古典概型是最简单,而且最早被人们所认识的一种概率模型,大约在1812年著名数学家拉普拉斯就已经注意并研究了古典概型概率的计算。下面先看一个抽牌游戏。
抽牌游戏:
有红桃1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,那么抽到的牌为红桃的概率有多大?
古典舞把上蹲教案篇8
课 题 古典概型 课 型 高一新授课 教学目标 理解古典概型及其概率计算公式,并能计算有关随机事件的概率 教学重点 理解古典概型的概念及利用古典概型求解随机事件的概率。 教学难点 如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。 教学方法 导学式、启发式教学 教 具 多媒体辅助 教学过程 教学内容与教师活动 学生活动 设计意图
创设情境引出课题
问题1:考察两个试验:
(1)抛掷一枚质地均匀的硬币的试验;
(2)掷一颗质地均匀的骰子的试验。
问:在这两个试验中,可能的结果分别有哪些?
教师引导学生思考 问题1:学生思考结果且给出基本事件的特点1
问题1设计意图:通过掷硬币与掷骰子两个接近于生活的试验的设计。先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。
问题2:在掷骰子试验中,随机试验“出现偶数点”可以由哪些事件组成?教师引导学生思考 问题2:学生归纳与总结, 问题2设计意图:通过举例,引出基本事件的特点2。 问题3:基本事件有什么特点?
教师加以引导与启发,利用基本事件的关系发现基本事件的特点 问题3:学生口答 问题3设计意图:提高学生概括总结能力 问题4:例1、从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?教师引导学生列举时做到不重复、不遗漏,教师指出画树状图是列举法的基本方法。
问题4:学生列举出基本事件。 问题4引导学生用列举法列举基本事件的个数,不仅能让学生直观的感受到研究对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点
通过设疑引出概念
问题1:(1)请问掷一枚均匀硬币出现正面朝上的概率是多少?
(2)掷一枚均匀的骰子各种点数向上的概率是多少?其中出现偶数点向上的概率是多少?让学生带着好奇心去观察数学模型,老师启发引导学生推导公式。
问题1学生得到答案且深层次的考虑问题
问题1设计意图:学生根据已有的知识,已经可以独立得出概率,通过教师的步步追问,引导学生深层次的考虑问题,看到问题的本质,得出概率公式。让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。
问题2:上述概率公式的推导过程中基本事件有什么特点?教师引导学生找出共性。具有下列两个特点的概率模型才能运用上述公式,我们称为古典概率模型,简称古典概型。
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性) 问题2学生观察和初步概括归纳古典概率模型及特征
问题2设计意图培养运用从特殊到一般,从具体到抽象数学思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过问题的解决引出古典概型的概念。
问题3:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
(2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么? 问题3学生互相交流,回答补充得到的答案 问题3设计意图:两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。
例题分析加深理例题分析加深理
例2、在数学考试中单选题是常用的题型,一般是从a,b,c,d四个选项中选择一个正确答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
教师引导学生思考是否满足古典概型的特征?教师对学生的回答进行归纳与总结
例2学生思考、讨论、交流,说出看法
例2设计意图:通过例题的学习让学生学会对古典概型的判断,就是看是否满足古典概型的两个基本特征:有限性与等可能性,由此掌握求此类题目的方法,让学生进一步理解古典概型的概率计算公式。
变式:假设我们现在将单选题改为不定项选择题,不定项选择题从a、b、c、d四个选项中选出所有正确答案,假设还是这名考生,他随机的选择一个答案,他猜对的概率是多少
教师引导学生列举15种可能出现的答案,判断是否满足古典概型的特征,利用概率公式求值。 变式:学生在老师的引导下列举15种可能出现的答案,并且判断是否满足古典概型的特征,利用概率公式求值。 变式设计意图:让学生感受到数学模型的生活化,能用所学知识解决新问题是数学学习的主旨。当学生用自己的知识解决问题后,会有极大的成就感,提高了学习兴趣。
例3、 同时掷两个骰子,计算:(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
教师将学生的结果汇总展示,学生给出的答案可能会有多种,然后引导学生分析原因,寻找解答中存在的问题。其中这两种答案分别对应了解题中的两种处理方法:把骰子标号进行解题和不标号进行解题,可以提示学生先把这两种方法下的基本事件全部列出来,然后验证是否为古典概型。
教师分析两种方式中每个基本事件的等可能性,引导学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式。
例3学生思考、讨论,列出两种方法下的基本事件,发现基本事件的总数不相等,学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式
例3设计意图:引导学生根据古典概型的特征,用列举法解决概率问题。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。