解决问题二教学反思优秀7篇
作为一名教师,大家务必要不断地进行教学反思,不管做什么事情都要有及时反思的习惯,教师的教学任务结束之后也要写好教学反思,下面是淘范文小编为您分享的解决问题二教学反思优秀7篇,感谢您的参阅。
解决问题二教学反思篇1
本节课教学设计主要抓住比例解答应用题的特征进行的。首先进行复习,一是两种相关联的量成什么比例关系,二是如何判断两种相关联的量成什么比例,怎样找出等量关系。在新课的教学中,围绕比例应用题的特征设问:题目中有三种量?哪种量是固定不变的?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能写出等式吗?通过学生自主探究获得新知,然后通过“练”达到巩固和提高。
本节课设计主要体现在“问”与“练”字上,怎样问,练什么,怎么练,我都做了认真的思考,深入研究,特别是在设计教学过程时把学生放在首位,考虑学生已经会什么,他们现在最需要什么。学生通过什么途径来解决,是独立思考还是合作交流呢。学生在这次教学活动中能得到什么?不同学生有什么不同的收获等等问题。做到心中有数,有的放矢。因此,一节课自始至终让学生参与体验解决问题的全过程。学生根据教师的巧妙设问,和富有启发性的引导,通过自主学习和合作交流,很快学生就掌握了新课的内容。这节课既重视比例解应用题的解题方法的教学,又鼓励解决问题策略的多样化,从中发展学生的个性,课堂结构严密,学生练得多,掌握得好。当堂验收绝大多数学生全部正确,学困生都掌握得不错。
但是,在实际教学过程中,这堂课的教学也还存在着很多的问题:
(1)对学生基础了解太少,从学生回答问题看,学生对判断哪两种相关联的量成什么比例,哪种量一定,怎样找出等量关系掌握不好,这是我备课时没想到的。学生是课堂的主体,如果课堂上学生的知识储备不够或者基本知识没过关,课堂也就失去了色彩。
(2)在教学过程中,我有时还是放不开,总是对学生不放心,这是一个不可忽视的大错。比如:在教学例6时,我完全可以放手让学生自己独立完成,但我总是担心怕学生不会做,出一些思考题让学生交流讨论,然后再做题。这样既禁锢了学生的思维,又耽误了教学时间,所以导致后面完不成教学任务拖堂。
(3) 用比例解答应用题,难度降低,正确率比较高,但是如果难度稍有提高,正确率就难说了。学生一般都不喜欢用比例方法,而喜欢用算术方法解答,很难接受用比例的知识解决这样的问题,把学生从传统的算术方法中释放出来才是问题的关键,因为习惯是难以改变,一种新的思维的注入是需要时间去改变的,所以对于用比例来解决问题必须在以后的课堂中经常提到,去改变他们传统的思维习惯。
解决问题二教学反思篇2
本节课是在学习了正反比例之后的一个内容,这个内容的特点主要是运用比例知识解决实际问题。首先复习导入,一是找出哪一个量一定,二是如何判断另外两个相关联的量成什么比例,从而找出等量关系。在新课的教学中,围绕比例的知识特征提问:哪两种量是变化的?哪种量是固定不变的?使学生清楚这两种变量的比值一定还是乘积一定,它们成什么比例关系?然后根据比例关系写出等式.在教学中通过学生自主探究获得新知,然后通过“练”达到巩固和提高,自始至终让学生参与体验解决问题的全过程。但是,在实际教学过程中,还存在着很多的问题:
(1)从学生回答问题看,题目中没有直接告诉哪个量一定,需要学生自已从已知的两个量中发现定量,因此学生有时找不准什么量一定,这样对判断两种相关联的量成什么比例出现问题.
(2)在教学过程中,总是对学生不放心,这是一个不可忽视的问题。比如:在教学用反比例解决问题时,我完全可以放手让学生自己独立完成,但我总是担心怕学生不会做,还是自已包办代替讲了这样既禁锢了学生的思维,又耽误了教学时间,那些会做的学生也觉得太哆嗦.
(3)用比例知识解决实际问题,难度降低,正确率比较高,但是如果难度稍有提高,正确率就难说了。学生一般都不喜欢用比例方法,而喜欢用算术方法解答。
解决问题二教学反思篇3
在新课学习时,我利用教材的主题题给出完整的问题情境,引导学生尝试有条理地分析数量关系,梳理解题思路。引导学生从收集信息,发现和提出问题开始,首先教会学生收集信息并且整理信息,要求学生会正确、有序地看图。要让学生知道看图的一般方法:先整体地了解图中的情境讲什么事,再看图中的其他信息,还要引导学生认真地,仔细地看图,把所有的信息收集起来。然后再理一理:哪些是条件,哪些是问题,哪些条件对这个问题有用,哪些条件对那问题有用。在收集信息,发现问题和提出问题的基础上,教学两步计算应用题,它是解决多步计算应用题的基础,是学生解决实际问题的转折点。虽然只比低年级多了一步计算,但在思考上却发生了质的变化,一步计算只要思考怎么列式就可以了,只用一个数量关系。而两步计算要用两个不同的数量关系,要列两个算式才能解决问题,而且更重要的是还必须先分析和思考先算什么,后算什么。
解决问题的方法有很多种,这个环节中我力求突出思路的提炼和反思的过程,不仅让学生说出“怎么想的”更通过追问让学生反思“怎样想到这样想的”,引导学生从问题出发寻找信息解决问题,也就是这一过程中实现“从信息到问题”与“从问题到信息”两种解题策略的沟通,使学生感悟解决问题方法的多样化。“有六条船,每条船上坐4人,这些人后来去玩只能坐3人的碰碰车,问需要多少辆碰碰车?” 课堂上有学生利用拆分的数学思想解决的:每条船上去掉一个人,每条船上还有3个人,这样相当于要6辆碰碰车,再把拿出来的6个人可以坐2辆碰碰车,2加6等于8,需要8辆,于是解决了问题。这种方法其实只有部分学生能想到的,除了要表扬学生用多种方法解决问题,更要引导学生学会最优化解决问题.
我本节课主要解决两个问题:
1、让学生主动探索解决问题的方法。以学生春游游玩这一生活情境出发,利用学生身边的事物作为教学资源,让学生已掌握的知识技能对解决新问题产生积极的影响,体现学生学习的自主性。使学生学会解决问题,找到解决问题的方法。
2、体现解决问题策略的多样化。在教学时,我让学生自主收集信息、理解数学信息,寻找解决问题的方法。有意识地引导学生从不同角度去分析信息、寻找方法,对于学生合乎情理的阐述,给于积极鼓励,激发学生探索的欲望,增强信心。不断的引导和鼓励,使学生逐步形成从多角度去观察问题的习惯,逐步提高解决问题的能力。遗憾的是,由于赛课只有三十分钟,最优化策略的思想未能完全渗透。
解决问题二教学反思篇4
根据教材总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:
从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:
一、是多出这类练习题进行训练;
二、是分析这类题时教给学生一个模式,这个模式是:读题——找出已知条件和问题——找出已知条件中与问题相同或相关的句子——找出单位“1”的数量——分析题中相等的数量关系——根据数量关系列算式解答.
比如“一件衣服现在降价2/5”,这句话把( )看作单位“1”的量,数量关系式是:
( )×2/5=( )。
好几位学生都填错了,有的填的是“现价”,有的填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“1”了——“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的见识还嫌少。
再结合例题加以说明.
(1)有一条鲸全长是21米,头部占二十一分之五,求头部的长度。
(2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?
帮助学生复习回忆有关解决这一类问题的基本方法。
“一找”找出关键句。
第(1)题的关键句是:头部占二十一分之五,
第(2)题的关键句是:是其中的十六分之五,
“二列”
帮助学生根据关键句分析了解其中的具体含义并且列出等量关系式。
第(1)题中的等量关系式是:鲸的全长×二十一分之五=头部的长度
第(2)题中的等量关系式是:全部米的重量×十六分之五=吃掉米的重量
“三算”
帮助学生根据等量关系式列出算式并完成计算。
第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。
第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为未知数x.
总的来说“分数乘除法解决问题”有6种基本形式:①求一个数的几分之几是多少②求比一个数多几分之几的数是多少③求比一个数少几分之几的数是多少④已知一个数的几分之几是多少,求这个数⑤已知比一个数多几分之几的数是多少,求这个数 ⑥已知比一个数少几分之几的数是多少,求这个数.
解决问题二教学反思篇5
为了能突破难点,让学生建立起这类问题解题策略的模型,并能正确解决问题,我从以下方面进行教学。
读懂文字—会画线段图—写出等量关系式—解决问题。
由于这类应用题是求“一个数的几分之几是多少”应用题的逆解题。因此,有以下几点需注意:
1.学生对找单位“1”的量基本掌握,但抓住重点句说出数量关系不够熟练。
2.多数学生对线段图不理解,画不出来。
3.要加强数量关系的分析,准确抓住数量的等量关系。
当教学例4后,有的学生对我说,她分不清到底是用乘法还是用除法解决。为了帮助学生分清乘法问题和除法问题,我决定加强训练学生找等量关系。为了提高学生解题准确率,我引导学生总结做题的步骤,平时要按照解题步骤去做题。步骤如下:1、读题,找出题中有哪些量;2、哪个量是单位“1”?;3、最关键的句子是哪句?4、根据关键句子画出线段图得出等量关系。5、单位“1”是已知的就是求一个数的几分之几是多少,用乘法列式计算;单位“1”是未知的,就已知一个数的几分之几是多少求这个数,用除法计算。把单位“1”设为x,列方程解或用除法。
因本班学生的接受知识水平参差不齐,部分学生对这类问题掌握得很好,解题能力比较强,能正确的画出线段图、写出等量关系式并正确解答。可还有好多个学生无法正确解题,只有加强辅导了。
解决问题二教学反思篇6
?解决问题的策略——从条件想起》这节课是苏教版三年级上册第五单元第一课时。这节课主要帮助学生联系已有的解决实际问题的经验,学会用从条件出发思考的策略分析数量关系,探寻解题思路,并解决一些实际问题。所谓从条件想起的策略,就是从已知条件出发,想出由这些条件所能解决的问题,并最终与所需解决的问题建立起联系,这是一种由因到果的思考方法。在解决实际问题的过程中,几乎都会运用到这一策略,所以理解并掌握这一策略,对于学生形成解决问题的能力具有非常重要的意义。在执教这节课的过程中:
一、从提问导入,初步感受策略
课始,我创设了“小猴乐乐的农场”的情境,提供两个已知条件,让学生根据已知条件提出数学问题,让学生初步体会到根据有联系的已知条件可以提出相应的数学问题。然后再出示教材中安排的小猴摘桃的例题,通过读题,找已知条件和问题,分析“以后每天都比前一天多摘5个”这个已知条件的含义,引导学生体验从条件出发思考的策略,初步感受策略运用的过程和特点。
二、比较反思,注重解题过程的回顾
教材中的例题在解决的过程中出现了两种方法,一种是列表法,另一种是算式法。在学生尝试解答之后,我让学生比较一下这两种比较的方法有什么共同之处,体会到虽然解题方法不同,但是都是从条件出发思考,结果也是相同的。回顾解决这道题的过程:读题,找已知条件和问题,分析有含义的已知条件,解决问题。教材中安排的“想想做做”第2题,我将它安排在解决了例题之后,我觉得这两题其实是十分类似的题型,所以在完成例题之后再完成这道题,然后将两道题的分析思考过程放在一起,比较一下这两道题在分析思考的过程中有什么相同之处,从而得出从条件一步一步地到问题的解决的过程,体会从条件想起策略的一般步骤,帮助他们由具体到抽象,不断加深策略体验,逐步增强解决问题的策略意识。
三、低估了学生的分析解题能力
在解决例题和想想做做第2题时,都是由我带着学生一起分析有含义的条件:“以后每天都比前一天都摘5个”和“每次弹起的高度总是它下落高度的一半”。在教学过程中,我发现大部分学生是理解这两个已知条件的含义的,所以我应该在理清了已知条件和问题之后就放手让学生来独立完成,然后再交流想法:为什么这么做?学生应该会说到从哪个条件得到什么等等,这样更能体现从条件想起的策略。
四、忽视了列表、画图辅助方法优势的渗透
解决实际问题时,学生一般都想到用列算式的方法来解决。本节课还渗透了列表,画图等多种方法辅助思考,引导学生根据实际问题的特点,合理选择解决问题的方法,使策略运用过程更具针对性。在学生解决完例题后,指名让学生上台交流,在交流的过程中,发现学生没有很好的认识列表这一方法,学生只是在运用了列算式的方法得出了结果之后把每天摘桃个数一一填到了表格中,没有体现出列表这种方法的优势,所以这里我应该引导学生认识一下表格,了解一下表格的里的内容等等,让学生明白列表也是解决问题的一种方式。在解决“想想做做”第3题时,由于教材中已经提供了18个圆圈,学生很快根据条件找到了答案,然后我让学生通过算式的方法再解决一遍时发现较多学生有困难。其实这里是一个让学生发现画图方法优势的好机会,在算式方法交流完后,我应该适时地总结:有的实际问题,运用画图的方法能更快地找到答案,我们要针对具体问题合理选择解题方法。
总之,这节课的设计不尽人意的环节较多,没有很好地体现学生学习的主动性,也没有突出从条件想起这一策略的优势,需要进一步改善。
解决问题二教学反思篇7
苏教版小学五年级下册第一单元《方程》第8—9页。这部分内容是在理解方程的含义,会用等式的性质解简单方程的基础上进行教学的。本节课主要解决列方程求“相差关系”和“倍数关系”的问题。学好本节内容将为以后学习打下基础。教材通过例7,试一试,练一练及练习二第5、6、7题完成任务。
“列方程解决简单的实际问题”的教学,既要让学生掌握列方程解决简单实际问题的一般过程,学会列方程解决一步计算的实际问题,更要让学生学会思考解决问题的方法。
列方程解决简单的实际问题,和用算式方法解决简单的实际问题有不同的地方,除了形式上的不同,更有思考方法上的不同。教材安排的“例7”是一幅情境图,理解图的意思是必须的,我的教学中引导学生进行摘录:小刚的跳高成绩是1.39米,比小军的跳高成绩少0.06米,小军的跳高成绩是多少米?情境图虽然直观,但表达的信息零星,需要整理,整理也是学好数学的重要方法,其中摘录是常用的整理方法。理解情境图的意思是解决实际问题的前提条件,算式方法、方程方法都必须有这一环节。
“含有未知数的等式是方程”。方程既然是等式,就要从数量间的相等关系入手思考,上题可以从关键句“小刚的跳高成绩比小军少0.06米”寻找,这句话蕴含的数量间的相等关系有二:一是小军的跳高成绩-0.06米=小刚的跳高成绩;二是小军的跳高成绩-小刚的跳高成绩=0.06,应用“大数-小数=相差数”这一规律悟得。
在明确题中数量间的相等关系的基础上,教师指出:“小军的跳高成绩不知道,可以设为x米,再列方程解答。”这里教师的讲授,就是为了让学生体验列方程解决要把未知量与已知量结合起来进行列式,体验和算式解决问题的不同。到此,形成了“整理信息—找相等关系—列方程”的思维框架。至于“列方程解决简单的实际问题”的书写格式,可以通过模仿课本、讨论交流、教师指导、作业反馈来熟悉,熟悉“写设句-列方程-解方程—检验写答句”是列方程解决实际问题的一般步骤。
第一堂课学生的课堂作业有许多毛病,如:解写了两个,“设”前面写了一个,解方程时又写了一个;假设未知数x时后面缺了单位;求得的未知数的值的后面多了单位等等。虽然有诸多的问题,但利用课间小组长的力量和练习课的专门辅导,基本得到全面解决。
“列方程解决简单的实际问题”是用方程方法解决问题的起始阶段,让学生明晰“整理信息—找相等关系—列方程”的思维框架,有着重要的意义,学生们可以用这样的思维框架去用方程解决简单的、复杂的实际问题。还有,要重视找数量间相等关系方法的积累,如根据“部分数+部分数=总数”、公式、常见的数量关系式等去寻找。长此以往,随着解决问题经验的不断丰富,数学学科的质量也会同步提高!