数学文化的心得体会8篇
心得体会是一种把大家心中想法用文字形容出来的文字材料,当我们通过这一段时间学习后,我们的内心也会涌现出非常多的心得体会,以下是淘范文小编精心为您推荐的数学文化的心得体会8篇,供大家参考。
数学文化的心得体会篇1
义务教育阶段的数学课程应突出体现基础性,普及性和发展性,使数学教育面向全体学生。既要加强学生的基础性学习,又要提高学生的发展性学习和创造性学习。让学生享受“快乐数学”。因此,本人通过对新课程的学习,对如何让学生学好数学有了进一步的认识。下面谈一下自己的感受:
首先育人要有新理念,新课程标准把全面发展放在首位,强调小学生学习要从以获取知识为首要目标转到首先关注人的情感、态度、价值观和一般能力的培养,创造一个有利于学生生动活泼,持续发展的教育环境。在教学中既要关注学生数学学习的水平,更要关注他们在数学实践活动中所表现出来的情感和态度。
其次,教学要有新方法
1、给学生提供动手实践的机会,变“听数学”为“做数学”。学生对数学的体验主要是通过动手操作,动手操作能促进学生在“做数学”的过程中对所学知识产生深刻的体验,从中感悟并理解新知识的形成和发展,体会数学学习的过程与方法,获得数学活动的经验。它是学生参与数学活动的重要方式。
新教材非常注重学生操作活动的设计并提供了大量的素材,教师要从“生动的直观到抽象的思维”的认识规律来设计、组织操作活动,并担当好组织者和引导者的角色。不能把操作流于形式,要让每个学生都必须经历每一个操作活动。还要引导学生把直观形象与抽象概括相结合,采取边说边操作,边讨论边操作等方式,让手、脑、口并用,在操作和直观教学的基础上及时对概念、规律等的本质属性进行抽象概括。
2、自主探索与合作交流从形式走向实质。教师要有目的地选择这些重演或再现的教学内容,给学生提供自主探索的空间和时间,让学生主动地进行观察、实验、猜测、验证等数学活动。自主探索是在教师引导下的探索,教师不仅要精心设计自主探索的情境,而且要关注学生探索的过程和方法。学之道在于“悟”,教之道在于“度”,教师要处理好自主与引导、放与收、过程与结果之间的辨证关系。对于那些估计学生通过努力能探索求得解决的问题,应大胆地放,放得真心、实在,收要收得及时、自然。如果只放不收,只是表面上的热闹,收效甚微。如果失去教师有价值的引导,学生的主体性也不会得到充分的发挥。
3、注意运用现代信息技术辅助教学。因为运用信息技术,有利于提高课堂教学效果。
数学文化的心得体会篇2
今天再次学习《小学数学新课程标准》,使我领悟到了教学既要加强学生的基础性学习,又要提高学生的发展性学习和创造性学习,从而培养学生终身学习的愿望和能力,让学生享受“快乐数学”,因此,本人通过对新课程标准的再学习,有以下的认识:
一、备课:变“备教材”为“备学生”
教师在备课过程中备教的方法很多,备学生的学习方法少。老师注意到自身要有良好的语言表达能力(如语言应简明扼要、准确、生动等),注意到实验操作应规范、熟练,注意到文字的表达(如板书编写有序、图示清晰、工整等),也注意对学生的组织管理,但对学生的学考虑不够。老师的备课要探讨学生如何学,要根据不同的内容确定不同的学习目标;要根据不同年级的学生指导如何进行预习、听课、记笔记、做复习、做作业等;要考虑到观察能力、想象能力、思维能力、推理能力及总结归纳能力的培养。一位老师教学水平的高低,不仅仅表现他对知识的传授,更主要表现在他对学生学习能力的培养。
二、上课:变“走教案”为“生成性课堂”
教学过程是一个极具变化发展的动态生成的过程,其间必然有许多非预期的因素,即便教师对学情考虑再充分,也有“无法预知”的场景发生,尤其当师生的主动性、积极性都充分发挥时,实际的教育过程远远要比预定的、计划中的过程生动、活泼、丰富得多。教师要利用好即时生成性因素,展示自己灵活的教学机智,不能牵着学生的鼻子“走教案”。
要促成课堂教学的动态生成,教师要创造民主和谐的课堂教学氛围。如果我们的课堂还是师道尊严,学生提出的问题,教师不回答,不予理睬,或马上表现出不高兴,不耐烦,那学生的学习积极性一定大打折扣,因而要让我们的课堂充满生气,师生关系一定要开放,教师要在教学中真正建立人格平等、真诚合作的民主关系。同时教师要高度重视学生的一言一行,在教与学的平台上,做到教学相长,因学而教,树立随时捕捉教学机会的意识,就必定会使我们的课堂教学更加活泼有趣,更加充满生机,也更能展示教师的无穷魅力。课堂提问注意开放性。
开放性的提问,没有统一的思维模式与现成答案,学生回答完全是根据自已的理解回答。答案一定会是丰富多彩,这可以作为我们教师的教学资源。教师根据这些答案给予肯定、或给予引导,使学生的思想认识在教师的肯定或引导中得到提高。要促进课堂教学的动态生成,还要充分发挥教师的教学智慧,教师对教育过程的高超把握就是对这种动态生成的把握。
三、变“教学”为“共同探讨”
新课程倡导建立自主合作探究的学习方式,对我们教师的职能和作用提出了强烈的变革要求,即要求传统的居高临下的教师地位在课堂教学中将逐渐消失,取而代之的是教师站在学生中间,与学生平等对话与交流;过去由教师控制的教学活动的那种沉闷和严肃要被打破,取而代之的是师生交往互动、共同发展的真诚和激情。因而,教师的职能不再仅仅是传递、训导、教育,而要更多地去激励、帮助、参谋;师生之间的关系不再是以知识传递为纽带,而是以情感交流为纽带;教师的作用不再是去填满仓库,而是要点燃火炬。学生学习的灵感不是在静如止水的深思中产生,而多是在积极发言中,相互辩论中突然闪现。学生的主体作用被压抑,本有的学习灵感有时就会消遁。
四、变“教师说”为“学生多说”
教学中教师要鼓励、引导学生在感性材料的基础上,理解数学概念或通过数量关系,进行简单的判断、推理,从而掌握最基础的知识,这个思维过程,用语言表达出来,这样有利于及时纠正学生思维过程的缺陷,对全班学生也有指导意义。教师可以根据教材特点组织学生讲。有的教师在教学中只满足于学生说出是与非,或是多少,至于说话是否完整,说话的顺序如何,教师不太注意。这样无助于学生思维能力的培养。数学教师要鼓励、指导学生发表见解,并有顺序地讲述自己的思维过程,并让尽量多的学生能有讲的机会,教师不仅要了解学生说的结果,也要重视学生说的质量,这样坚持下去,有利于培养学生的逻辑思维能力。
根据小学生的`年龄特点,上好数学课应该尽量地充分调动学生的各种感官,提高学生的学习兴趣,而不能把学生埋在越来越多的练习纸中。例如,口算,现在已经名不副实,多数用笔算代替,学生动手不动口。其实,过去不少教师创造了很多口算的好方法,尤其在低年级教学中,寓教学于游戏、娱乐之中,活跃了课堂气氛,调动了学生学习积极性,其它教材也可以这样做。我们不能把数学课变成枯燥无味、让学生学而生厌的课。在数学课上,教师要引导学生既动手又动口,并辅以其它教学手段,这样有利于优化课堂气氛,提高课堂教学效果,也必然有利于提高教学质量。
总之,面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中做数学、理解数学和发展数学,让学生享受“快乐数学”。
数学文化的心得体会篇3
作为一名一线数学老师,就必须对数学的课程标准完全了解。在现在的教学改革背景下,小学数学的新课标有了巨大的变化,对于学生来说,到底是一门怎样的课程呢?在这一轮小学数学远程培训中,通过学习小学数学新课标,再结合具体的教学实践,我有了如下几点体会:
一、教师要成为终身学习者。
教师要走进新课程,实现课程目标,其自身必须有先进的、与新课程相适应的教育理念。为达成这一目标,教师首先要把自己定位成一个“学习者”。教师要在掌握扎实的专业知识基础上,学习自然科学、社会科学。研究前沿的最新成果最新知识,还要学习与提高对人的认识,现代教育技术手段的运用以及教育研究等方面的知识,构建多元化的知识结构,使自己不仅会教,而且有自己的教育追求与风格。
二、注重生活数学,切实提高数学素养。
在应试教育面前,我们的数学教育工作者不同程度地存在着抓尖子生,忽视“学困生”的现象,这即不符合素质教育的要求,也严重影响着整体数学素养提高,在平时的教学中,一定要面向全体学生,重心下移,从最后一名学生抓起,才能做到“水涨船高”,学生智力存在着差异这是客观的,我们要分层要求,使每位学生都能在他的原有的基础上提高,获得成功。新课标提出“人人学有价值的数学,人人都能获得必须的数学。”强调了大众数学学习的内容的应用价值——能适应未来社会生活的需要。学习数学的最终目的是应用。数学来源于生活,又服务生产实践,所以数学教学除了系统的数学知识的教学外,还应密切联系生活实际,调整相应的数学内容,做到生活需要什么样的数学内容,就教学什么样的数学知识,让生活中学生所必须的知识与技能成为数学教学的目标与追求,使学生感悟到数学就在日常生活中。
总之,面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中用数学、理解数学和发展数学。
数学文化的心得体会篇4
选修课实行了大半个学期后,我们都切实感受到了选修课对于我们的全面发展有着极大的促进作用。
因为选修课是我们根据自己的爱好来选择的课,这样,我们就会花时间和精力去努力地学习这门课也就是说,我们是抱着积极的态度去学习选修课的,从而近一个学期下来,我们能从选修课获得不少自己感兴趣的知识,这对我们拓宽视野和培养技能都有较大的帮助。
例如我参加的生活中的嘉兴,老师精心准备的课件和颇具幽默的讲课风格,使我们全身心地投入到课堂中去,不仅丰富了我们的课外知识,同时也能与书本知识相联系,以便对其有更深刻的理解。生活中的嘉兴这门课使我们对自己身后的这片热土有了进一步的了解,作为一个嘉兴人,我认为这还是十分必要的,当我们离开了这里,在外求学的时候,应该学会如何向别人介绍自己可爱的家乡。
再者,我还参加了创业课程,老师运用简单事例和模拟游戏告诉我们一些创业者该具有的`基本素质,以及创业需要的人力、物力、财力,并通过分组合作,使我们懂得了创业并不是想象中那么简单,也会碰到种种问题。虽然大部分都是基础的理论知识,但我相信这对我们踏上社会后的发展有了初步的指导作用。
与此同时,我们学校大力开展的社团活动,也使我们受益匪浅,大家根据自己的兴趣参加社团活动,发展自己的兴趣,和志同道合的朋友们一起分享自己的感想,丰富了大家的课余生活。许多优秀的社团不仅可以拓展相关的知识,也可以锻炼同学们的交际能力和组织能力,例如模拟联合国社团,在大大提高英语口语能力的同时,也增加了同学们演讲的自信,锻炼了口才;嘉中tv和广播站为有才华的人提供了展示的平台,提供了锻炼的机会,提升了自己的能力。
总而言之,选修课对我们的学习和生活都有着巨大的积极作用,希望能进一步开展下去。
数学文化的心得体会篇5
在没接触《数学文化》这门课程之前我就经常听我朋友说有关这门课程的东西,那时候我一直以为跟我们所学的高数、线性代数一样枯燥无味。直到真正去上了这门课程之后,我才发觉跟我一开始想的完全不一样。
在《数学文化》的课堂上,老师的授课方式很有趣,每个专题各有特色,在听老师的详细讲述后,我对数学文化颇有兴趣,深有感触,特别是“混沌”和“维数”这两个专题。
我觉得老师对“混沌”和“维数”这两个专题见解独到,我也能从中吮吸到一定的精华。这两个专题所涉及的内容也让我很感兴趣。
关于“混沌”,一开始对这两个字根本不了解。还误以为跟“馄饨”有一定关系,直到听了老师仔细的讲述,我才真正明白了“混沌”的含义。其实它也是数学文化中的一个方面,在非线性科学中,混沌现象指的是一种确定的但不可预测的运动状态。它的外在表现和纯粹的随机运动很相似,即都不可预测。但和随机运动不同的是,混沌运动在动力学上是确定的,它的不可预测性是来源于运动的不稳定性。或者说混沌系统对无限小的初值变动和微扰也具于敏感性,无论多小的扰动在长时间以后,也会使系统彻底偏离原来的演化方向。上了关于“混沌”这个专题后,我第一个想到的典例就是天气变化,我觉得它很形象地形容了天气变化的特性,其中最著名的表述就是蝴蝶效应:南美洲一只蝴蝶扇一扇翅膀,就会在佛罗里达引起一场飓风。在今天计算机技术飞速发展的时代,混沌学已发展成为一门影响深远、发展迅速的前沿科学,同时也跟我们的日常生活息息相关。
而另外一个专题就是“维数”,对于这个专题我比较熟悉,因为在之前的数学课堂上便有接触关于一维、二维···甚至n维,不过在学的时候不是重点章节,数学老师也没有给我们做深入的讲解,直到上了数学文化这门课,老师给我们做了一个专题方便我们更系统地了解“维数”这一概念。所谓“维数”,又称维度,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。之前还不知道维数有那么多讲究,现在才真正明白每个维数所代表的含义,0维是一点,没有长度。一维是线,只有长度。二维是一个平面,是由长度和宽度(或曲线)形成面积。三维是二维加上高度形成体积面。四维分为时间上和空间上的四维,人们说的四维经常是指关于时间的概念。准确来说,四维有两种。第一种是四维时空,指三维空间加一维时间。另一种便是四维空间,只指四个维度的空间。四维运动产生了五维。虽然“维数”比较抽象,但是在我们的实际生活中,也有一些相关领域把一个常用和熟知的有限维数的结果推广到无限维数的情形,对我们也有一定的实用意义。
在数学文化这门课程中,我受益匪浅,老师别样的讲课风格以及详细的课件内容让我对数学文化这个博大精深的领域兴致勃发,在学习了关于“混沌”和“维数”这两个专题之后,使我更加想了解更多有关数学文化的想法,对我们来说,虽然数学文化很抽象,但是对我们的实际生活却很有影响。
我觉得,在这门课程结束之后,我依然会更深入地去了解有关数学文化方面的知识,因为深受老师的熏染,我更渴望去了解相关知识。
总而言之,我很荣幸抢到了数学文化这门课,更荣幸的`是有这样一位老师传授了很多有趣的关于数学方面又涉及实际生活的知识。辛苦了,谢谢老师这学期的辛勤教导!
数学文化的心得体会篇6
第一次上选修课选科目的时候我就选了“数学文化”,因为当我看到这个名字时,我觉得学到一些数学的周边知识对我的学习与生活可能还是有点用的,所以我报了名。
“数学文化”这门课给我们介绍了很多数学的知识,包括数学的历史、数学的发展等等,我们国家是一个数学大国,也是一个数学古国,早在__多年前,我们的祖先就有“周三经一”的思想,也就是今天人们讲的圆周率π,而西方国家到了17世纪才有这样的概念,陈景润关于“哥德巴赫猜想”的卓越工作,令世界震惊。实际上,我们每一个人,天天都在跟数字打交道。一个人不识字完全可以生活,但是若不识数,就很难生活了,现代科技进步,对数学的要求越来越高,所以我觉得“数学文化”这门课程为我们剖析“数学”这门神秘而又与我们息息相关的科学,对我们来说是获益匪浅的。
听讲了几次课后,我觉得我收获蛮多,在老师的带领下,我们在数学的王国里漫游着,学习着,就像参观景点一般浏览了数学世界的奥秘,第一堂课的时候,老师就给我们讲了数学的历史:数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
除了数学的历史以外,老师还给我们点评了数学史上的一些重大事件,如三次数学危机,这三次数学危机每一次都是数学探索者们在进行对数学这门学科的探索时产生的问题,每次出现了数学危机后,数学家们都努力地对其进行探究,通过各种各样的方法把这些问题解决。那节课让我了解到数学的世界是时时刻刻都会有矛盾的世界,研究数学就是在研究把这些矛盾解决掉或者用正当的理论把矛盾解释清楚的方法。
在这门课上我还第一次真正了解了欧式几何、非欧几何等数学分支以及它们诞生的意义和对人类文明的深刻影响等等很多关于数学的知识,让我第一次了解到在我们这个世界上,任何事物并不一定就像我们平时所看到的那样,三角形的内角和在某种情况下可能小于180°,也可能大于180°,这些可能暂时对我们的用处还不大,但了解了这些东西对我们以后学好“数学”这门课程或者说研究这门科学有很大的帮助。
我很喜欢老师给我们上的最后一节课,因为在这节课上,老师给我们看了很多由数学分形而制成的各种各样的图像,如julia集合,一幅幅画面看得我眼花缭乱,仿佛进入了仙境一般,我都无法用言语来形容我当时的感受,那让我明白了原来生活中在衣服上、各种电器的屏保中的那么多美丽的图案都是出自数学这门神秘的学科里,那节课真的让我们体验到了数学的神奇与壮观。
老师的讲述让我慢慢消除了心中对数学这门学科的神秘光环,使我了解了数学,并让我看到了数学的美丽和壮观,还让我对数学——这门把一切事物抽象化的科学产生了浓厚的兴趣。虽然我知道,要学好数学很难,高数的第一学期课程:集合、极限、微积分的题目让我焦头烂额,但我清楚,作为一名计算机专业学生,不了解数学、不学好数学是不行的,我会努力地去学数学这门课程,不单单是学习数学的公式定理,更要学习数学家们坚持不懈、开拓进取的精神。
数学文化的心得体会篇7
这次选修课我选了“数学文化”,因为当我看到这个名字时,我觉得学到一些数学的周边知识对我的学习与生活可能还是有点用的,所以我报了名。
“数学文化”这门课给我们介绍了很多数学的知识,包括数学的历史、数学的发展等等,早在20xx多年前,我们的祖先就有“周三经一”的思想,也就是今天人们讲的圆周率π,而西方国家到了17世纪才有这样的概念,陈景润关于“哥德巴赫猜想”的卓越工作,令世界震惊。实际上,我们每一个人,天天都在跟数字打交道。一个人不识字完全可以生活,但是若不识数,就很难生活了,现代科技进步,对数学的.要求越来越高,所以我觉得“数学文化”这门课程为我们剖析“数学”这门神秘而又与我们息息相关的科学,对我们来说是获益匪浅的。
第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
老师还给我们点评了数学史上的一些重大事件,如三次数学危机,这三次数学危机每一次都是数学探索者们在进行对数学这门学科的探索时产生的问题,每次出现了数学危机后,数学家们都努力地对其进行探究,通过各种各样的方法把这些问题解决。那节课让我了解到数学的世界是时时刻刻都会有矛盾的世界,研究数学就是在研究把这些矛盾解决掉或者用正当的理论把矛盾解释清楚的方法。
有一节课上,老师给我们看了很多由数学分形而制成的各种各样的图像,我都无法用言语来形容我当时的感受,那让我明白了原来生活中在衣服上、各种电器的屏保中的那么多美丽的图案都是出自数学这门神秘的学科里,那节课真的让我们体验到了数学的神奇与壮观。
这门课让我对数学——这门把一切事物抽象化的科学产生了浓厚的兴趣。虽然我知道,要学好数学很难,学习数学不单单是学习数学的公式定理,更要学习数学家们坚持不懈、开拓进取的精神。
数学文化的心得体会篇8
数学具有科学价值和应用价值,若问数学有文化价值吗?数学能培养人的理性思维能力,数学的理性精神体现在哪些方面?只有真正理解数学文化的定义、内涵和特点,才能真正理解数学的教育价值,达到让数学文化贯穿高中数学教学始终的目的。我主要从三方面谈谈对数学文化的理解:
一、数学文化的定义
在理解数学文化定义之前,首先了解什么是文化及文化的特点,简单地说,文化就是指人类在社会历史实践过程中所创造的物质文明和精神文明的总和。一般来讲又特指精神文明。文化有可识别性、传承性、扩展性的特点,除此之外,文化还具有地域性和民族性的特点。传承性是文化最基本、最本质特征。
“数学一直是人类文明中的主要文化力量,它与人类文化休戚相关,在不同时代,不同文化中,这种力量的大小有所变化”。认同了文化的定义,就不难理解《普通高中数学课程标准》给出了数学文化定义:数学文化是指数学的思想、精神、语言、方法、观点,以及它们的形成和发展;还包括数学在人类生活、科学技术、社会发展中的贡献和意义,以及与数学相关的人文活动。数学具有文化的所有特点,所以上述定义也可以表述为:数学文化是指人类在长期的数学实践过程中创造的物质文明和精神文明的总和。
数学文化的定义反映了数学的本质:数学是人类以其深刻而独特的思想不断地对现实世界进行的高层次抽象的一种创造活动。从文化本质和数学的本质来看,数学就是一种文化。这种文化推动了社会的进步和人类的发展。
二、数学文化的内涵
我主要从以下几方面理解数学文化的内涵:
(1)数学教育既能够培养人的严密的逻辑思维,又能培养人的直观形象思维;
(2)数学问题往往富有挑战性,合理的数学学习有利于学生形成自我激励机制;
(3)数学中的整体性思想、化归思想、在变化中把握不变的思想及优化思想,有利于人们树立合作意识、本质意识、联系意识、简约意识;
(4)“美感和美的意识是数学直觉的本质”,数学美诱发人们对数学的兴趣,促进人们对数学的学习、发展和应用;
(5)数学是人类最通用的语言,也是简洁而又精确的语言;不仅是人们交流的重要工具,而且越来越有力地支持着科技乃至整个人类文明的进步。
简言之,数学不仅能培养学生的理性思维,而且还能涵养学生的品格。通过掌握数学的思想、方法,欣赏数学语言之美,激发学生学习数学的兴趣。因此数学文化的内涵不仅表现在知识本身的科学价值,还体现了它的精神价值、应用价值和教育价值。
三、数学文化的特征
?普通高中数学课程标准(实验)》解读认为“数学的抽象性和形式化的特点是数学文化的重要特征;数学的严密性也是数学具有很强文化性的重要特征;数学在应用方面的广泛性是数学文化的重要特征”。
黄秦安先生从系统的观点出发,指出数学文化所具有的8大特征:①是传播人类思想的一种基本方式;②是自然、社会、人之间相互关系的一个重要尺度;③是一个动态的、充满活力的科学生物;④具有相对的稳定性和连续性;⑤是一个包含着自然真理在内的具有多重真理性的真理体系;⑥是一个以理性认识为主体的具有强烈认识功能的思想结构;⑦是一个由各个分支的基本观点、思想方法交叉组合构成的具有丰富内容和广泛应用价值的技术系统;⑧是一门具有自身独特美学特征、功能与结构的美学分支。以上从不同的角度刻画了数学作为一种文化所独有的一些特征,揭示了作为文化的数学与作为科学的数学的区别所在。
“传承性”是文化最基本、最本质特征。数学作为一种文化,数学文化的基本特征是继承性、民族性、变异性。在理论研究层面上,只有在继承性、民族性的研究基础上,才能讨论不同民族的即所谓人类共有的数学文化特征。
数学的思想、语言和方法在高中教学中早已渗透到课堂教学中,而作为数学文化的基本特征的继承性、民族性、变异性在高中数学课堂教学的落实还需要一个过程。随着教学理念的不断进步,老师们在涉及数学史的教学中不再只关注中国的数学家而是放眼世界的数学家,本人在3月份有关数学文化问卷调查中设置了这样一个问题“请写出你知道的数学家的名字(知道几个就写几个)”好多同学不仅填写了祖冲之、赵爽、刘徽等,还填写了牛顿、达芬奇、毕达哥拉斯、欧拉、费马等等。
四、自己在“数学文化”教学中的不足和今后努力方向
要真正理解数学文化的定义、内涵和特点,才能真正理解数学的教育价值,在平时的教学中要想实现数学文化的真正体现和有效渗透,可以从以下几方面入手①深入挖掘数学概念、定理、结论的缘起、形成和发展中蕴涵了哪些数学文化。如:集合的概念、函数的概念、解析几何的概念、向量的概念等;②精心解读数学家的数学精神、思想和方法。数学家在数学创造活动中表现的崇高信念、审美直觉、理性思维、高尚情操是数学文化的原创精神。如:数学家祖冲之、刘徽、祖暅、笛卡尔、欧拉等;③分析数学产生发展的历史和逻辑,数学的产生与科学的发展、社会的进步和人类理性思维提升有怎样的内在联系,数学知识、思想和方法的现实来源是什么,生活中有哪些事物与数学息息相关。如:从孟姜女庙的对联可以联想到三角函数的周期性;在对数函数的'教学时让学生对唐山大地震(震级为7.8级)与汶川地震(震级为8.0级)从振幅上进行对比,了解什么是震级;学完等比数列让学生对储蓄利率、房贷利率年限及还款数额的关系进行总结等等。
总之,数学作为文化的一部分,其最根本的特征是它表达了一种精神——探索精神和理性精神。有关探索精神是高中数学教学一直倡导的精神。数学崇尚实事求是的精神,具有可贵的质疑、怀疑和批判态度。数学崇尚独立思考、追求真理、判断的合理性和公正性、对事物不先入为主、不存偏见、不偏听偏信、客观公正、尊重事实、以理服人。这些构成科学精神的核心特征品质恰恰也正是人性和理性的思想精髓。这正是高中新课程标准要求学生达到提高文化素养,养成求实、说理、批判、质疑等理性思维的习惯和锲而不舍的追求真理精神的目标。只有求真才能求善、求美。在平时的课堂教学中只有把提高数学素养、展现数学文化的内涵作为数学的主要目标,才能逐步把学生的数学素养转化为学生内在的文化素养,最终达到立德树人的目的。