六年级上册人教版数学教案8篇
教案的设计使得教学目标明确,促进学生的学习效果,一份富有创意的教案能够激发学生的想象力,鼓励他们探索新思路和方法,淘范文小编今天就为您带来了六年级上册人教版数学教案8篇,相信一定会对你有所帮助。

六年级上册人教版数学教案篇1
教学内容:
九年义务六年制小学数学课本第十一册“比的意义”。
教学目标:
1.掌握比的意义,会正确读、写比。
2.记住比的各部分名称,会正确求比值。
3.理解比与除法、分数之间的关系,明确比的后项不能为0的道理,同时懂得事物之间的相互联系性。
4.通过自学讨论,激发学生合作学生1:牛奶比果汁多1杯。
生2:果汁比牛奶少1杯。
生3:果汁的杯数相当于牛奶的
生4:牛奶的杯数相当于果汁的
师:2÷3是哪个量和哪个量比较?
生:果汁的杯数和牛奶的杯数比较。
师:3÷2求得又是什么,又可以怎样说?
生:牛奶的杯数和果汁的杯数比较。
2、师述:用新的一种数学比较方法,可以说成果汁和牛奶杯数的比是2比3。今天这节课我们学教师指着板书问:2÷3求的是什么?是哪个量和哪个量的比?
生:2÷3求的是果汁是牛奶的几分之几,是果汁和牛奶的比。
师:对!2÷3求的是果汁是牛奶的几分之几,也可以说成果汁和牛奶的比是2比3。
(板书:果汁和牛奶的比是2比3,学生齐读。)
师:照这样,牛奶是果汁的几分之几也可以说成牛奶和果汁的比。
生:牛奶是果汁的几分之几也可以说成牛奶和果汁的比是3比2。
(板书:牛奶和果汁的比是3比2)
师:都是果汁和牛奶的比较,为什么一个是2比3,而另一个却是3比2呢?
生:因为2比3是果汁和牛奶的比,而3比2是牛奶和果汁的比。
师:对,研究两个数量的比较,谁和谁比,谁在前,谁在后,是不能颠倒的。
出示试一试。
师:1:8表示什么意思?
生:1和8表示洗洁液1份,水8份。
师:怎样表示容液里洗洁液与水体积之间的关系?
生:先求出体积再比较。
课件出示:走一段900米长的山路,小军用了15分钟,小伟用了20分钟。让学生填表。
师:小军和小伟的速度是怎样求出来的?900:15表示什么?900:20又表示什么?
师:说说900米和15分钟的意义。
生:900米和15分钟分别是小军走的路程和时间。
师:那么小军的速度又可以说成哪两个量的比?
生:小军的速度可以说成路程和时间的比。
师:什么叫比?(同桌互相说一说,然后汇报。)
生1:除法叫比。
生2:两个数相除叫比。
师:两个数相除,以前叫除法,今天就叫做比。多了一种叫法,你觉得“比”字前面加上一个什么字比较妥当?
生1:加上“又可以”。
生2:加上“又”字。
师:两个数相除又叫做两个数的比。想一想这个比表示的是两个数之间的什么关系?
(随着学生的回答,教师在“相除”下面加上着重号,学生齐读比的概念。)
2.自学探究比的各部分名称等知识。
师:请同学们自学课本第68~69页。把自己认为重要的知识画出来,自学完后同桌互相说说“我自学到了什么”。
(学生同桌相互说完后,集体汇报探究。)
生:我学会了比的写法。
(老师指着2比3,让学生到黑板上写出2∶3。)
师:2、3中的符号“∶”是什么呀?
生:这是比号。(板书:比号)
师:写比号时,上下两个小圆点要对齐放在中间。(让学生同桌互相看看比号写得是否正确,并接着汇报。)
生:我知道了比号前面的数叫做比的前项,比号后面的数叫做比的后项。
师(指着2∶3)问:前项后项各是几呀?(学生答后接着汇报。)
生:我知道了比的读法。
(教师指着2∶3,指名学生试读2比3,然后学生齐读2比3。)
师:我们已经知道比的读法、写法,以及各部分的名称,想一想,你还学到了什么知识?
六年级上册人教版数学教案篇2
教学目标
1、给合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、通过观察、操作、想象等活动,发展空间观念。
教材分析重点
在观察、操作中体会圆的特征。知道半径和直径的概念。
难点
圆的特征的认识及空间观念的发展。
教材准备
圆规课件
教学过程:
一、观察思考
1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。
2、(呈现教材套圈游戏中的`第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。
3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)
4、上面我们接触了三种图形—直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。
二、画圆
1、你们谁能画出圆来吗?动手试一试。
2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。
3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)
三、认一认,练一练
1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。
2、半径和直径的辨认。
3、判断:a在同一圆内只可以画100条直径。
b、所有的直径都相等,所有的半径都相等。
c、两端都在圆上的线段叫直径。
四、画一画,想一想
1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直径呢?(放动画)
2、以点a为圆心画两个大小不同的圆。
3、画两个半径都是2厘米的圆。
4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗?
五、应用提高
讨论:圆的位置和什么有关系?圆的大小和什么有关系?
六、作业
1、教材练一练
2、在平面上先确定两个不同的点a和b,再画一个圆,使这个圆同时经过点a和点b(就是这两个点都在所画的圆上),这样的圆能画几个?
训练学生的观察能力,发现问题的能力
不直接说出圆,把思考的空间留给学生
在画图中体会圆的特征
思考共同之处时再一次体会圆的特征
通过正反例的练习,加深对半径和直径的理解
动手操作,理解画圆的关键是定圆心(位置)和半径(大小)
巩固提高,满足不同学生要求
教学反思
六年级上册人教版数学教案篇3
一、教学内容
比的意义。(教材第48~49页)
二、教学目标
1.理解比的意义,掌握比的读、写及各部分名称。
2.明确比与分数、除法的关系。
3.会正确读、写任意相关联的两个量的比,掌握求比值的方法。
三、重点难点
重点:1.理解比的意义,能正确读、写比。
2.掌握比的各部分名称及求比值的方法。
难点:理解比与分数、除法的关系。
教学过程
一、情境引入
(课件出示教材第48页的图)
1.师:你从图中获得了哪些信息?有什么感受?(组织学生同桌交流,然后点名学生回答)
2.师:图中展示的两面旗都是长15 cm,宽10 cm。我们可以怎样表示它们长和宽的关系呢?
学生交流得出:
(1)用比较多少的方法来表示:长比宽多5 cm,宽比长少5 cm。
(2)用倍数关系来表示:长是宽的15/10倍,宽是长的10/15。
3.引出新课。
师:在描述两个量之间的关系时,我们除了可以用“多多少、少多少、几倍、几分之几”来描述外,还可以用“比”来描述两个量之间的关系,今天我们就来学习比的知识。(板书课题:比的意义)
二、学习新课
1.教学比的意义。
(1)同类量的比。
师:这两面旗的长和宽的倍数关系还可以用比来表示。长是宽的15/10倍,可以说长和宽的比是15比10。那么宽是长的10/15可以说成谁和谁的比是几比几呢?
引导学生自己说出宽和长的比是10比15。
教师小结:长和宽都是表示长度的量,属于同类量。所以无论是长和宽的比还是宽和长的比,都是两个长度的比,我们把这类比叫做同类量的比。
(2)非同类量的比。
课件出示:“神舟”五号进入运行轨道后,在距地350 km的高空做圆周运动,平均90分钟绕地球一周,大约运行42252 km。
①师:怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?
引导学生回答用“42252÷90”求出速度。
②师:除了用除法来表示路程和时间的关系外,我们也可以用比来表示,也就是飞船所行路程和时间的比是42252比90。因为这里的42252 km与90分钟是两个非同类的量,所以比也可以表示非同类量之间的关系。
(3)归纳比的意义。
师:结合上面两个例子,你能说一说什么是比吗?
学生试说,教师小结:两个数的比表示两个数相除。(板书比的意义,组织学生齐读)
2.教学比的读、写法和各部分名称。
(1)引导学生自学教材第49页上半页的内容。
师:你学到了哪些比的知识?
组织学生讨论交流后汇报。根据学生的汇报,板书:
(2)明确比值的求法和表示方法。
师:用比的前项除以后项所得的商,叫做比值。例如这里的3/2。(板书:比值=比的前项÷比的后项)
教师提示:比值通常用分数表示,也可以用小数或整数表示。
3.教学比与除法、分数的关系。
师:观察上面的式子,你能发现比与除法的关系吗?
引导学生发现比的前项相当于被除数,比号相当于除号,比的后项相当于除数,比值相当于商。
师:根据分数与除法的关系,比和分数又有什么关系呢?
小组讨论,汇报交流。根据学生回答,课件演示下表:
教师总结:比与除法、分数联系紧密,但又有区别。除法是一种运算,分数是一种数,比表示两个数之间的关系,各自的意义不同。所以在表述它们之间的关系时,要说“相当于”,而不能说成“等于”或“是”。
三、巩固反馈
1.完成教材第49页“做一做”第1、2题。(学生独立完成,点名学生回答)
第1题:6 8 3/4 1.8 2.4 3/4
第2题:1/8 4
2.完成教材第52~53页“练习十一”第1、3、5题。(第1、5题学生独立完成,第3题点名学生板演,集体订正)
第1题:(1)14 8 7/4
(2)16 10 8/5 10 26 5/13
(3)18 12 3/2
第3题:5/9 15/4 7/9 1.6
第5题:7∶5=1.4 2∶1=2
23∶20=1.15
菠菜的钙、磷含量比最高,茄子最低。
四、课堂小结
今天我们学到了什么知识?比的意义是什么?
板书设计
比的意义
比的意义:两个数的比表示两个数相除。
教学反思
1.本节课的内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的`基础上进行教学的。这节课的知识点较多,有比的意义、读写以及各部分名称;有比值的概念及其求法;还有比与除法、分数的区别与联系等。针对本课内容的特点,在教学中,主要体现以下两个方面:
一是通过讲导结合,理解比的意义。在学习比的意义的时候,考虑到学生对比缺乏认知,所以主要通过教师的“导”,引导学生明确:对两个数量进行比较,可以用除法,也可以用比,并通过同类量和不同类量的比,引出比的意义。
二是注意学生自学能力的培养和小组合作学习的开展。在学习比的各部分名称及读法、写法时,采用了让学生看书自学的方式,在学习中通过探索问题、解决问题,达到掌握知识的目的。在学习比和除法以及分数关系的时候,采用小组合作学习的方式,让学生结合教材,围绕问题展开讨论,总结出三者之间的联系和区别。
2.我的补充:
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
备课资料参考
典型例题准备
?例题】工人种植一批树苗,已种植的棵数与总棵数的比是2∶5,下午又种植了36棵,这时已种植的棵数与总棵数的比是5∶8。这批树苗共有多少棵?
分析:根据比与分数的关系,可以将与比有关的问题转化为分数问题解答。
已种植的棵数与总棵数的比是2∶5,也就是已种植的棵数是总棵数的2/5。又种了36棵后,已种植的棵数与总棵数的比是5∶8,即此时已种植的棵数是总棵数的5/8。所以36所对应的分率是5/8-2/5,即36是总棵数的5/8-2/5。求单位“1”,用除法计算。
解答:36÷5/8-2/5=36÷9/40=160(棵)
答:这批树苗共有160棵。
解法归纳:把与比有关的问题转化为分数问题解决时,关键是根据已知比正确得出谁是谁的几分之几。
相关知识阅读
奇妙的比
张扬和李明在争论一个问题。张扬说:“比的后项不能为0,可是,前几天中国女足还以3∶0的成绩战胜了美国女足。这里的比的后项就是0,为什么呢?”
李明笑着说:“比赛中的3∶0,与表示倍数关系的比是两码事。虽然读法、写法都一样,可它们的意义不相同。表示倍数关系的两个数,也可以表述为两个数相除,又叫做两个数的比。由于除数是0没有意义,所以比的后项也不能是0。而比赛中记录的3∶0,不表示两个队得分的倍数关系,只表示比赛双方的进球的个数,只是借用了比的写法。”
张扬佩服地点了点头。
六年级上册人教版数学教案篇4
教学目标:
1.使学生学会在具体情境中探索确定位置的方法,懂得能用数对表示物体的位置。
2.经历探索确定物体位置的方法的过程,让学生在学习的过程中发展空间观念。
3.使学生感受确定位置的丰富现实情景,体会数学的价值,产生对数学的亲切感。
教学重点:
能用数对表示物体的位置。
教学难点:
能用数对表示物体的位置,正确区分列和行的顺序。
教学准备:
投影仪、本班学生座位图
教学过程:
一、复习旧知,初步感知
1、教师提问:同学们,你能介绍自己座位所处的位置吗?
学生介绍位置的方式可能有以下两种:
(1)用“第几组第几个”描述。
(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。让学生先说说
2、我们全班有48名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
3、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新知探究
1、教学例1(出示本班学生座位图)
(1)如果老师用第二列第三行来表示同学的位置,那么你也能用这样的方法来表示自己的.位置吗?
学生对照座位图初步感知,说出自己的位置。个别汇报,集体订正。
(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、小结例1:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。比较(2,3)与(3,2)的不同。
{在比较中发现不同之处,从而加深学生对数对的更深了解。}
3、练习:
(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
(电里的座位、地球仪上的经纬度、我国古代围棋等。)
{拓宽学生的视野,让学生体会数学在生活中的应用。}
三、当堂测评
教师课件出示,学生独立完成。小组内评比纠错。
{做到兵强兵、兵练兵。}
四、课堂总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?还有什么不懂的?
{让学生说出,了解对知识的掌握情况。}
六年级上册人教版数学教案篇5
一、说教材
教材分析:
本节课是在学生已经学过除法和分数的意义以及分数与除法的关系的基础上进行教学的。由于学生在理解比的意义上比较困难,教材并没有采取直接给出“比”的概念的做法,而是密切联系学生已有的生活经验和学习经验,提供了多种情境,引发学生的讨论和思考,让学生体会引入比的必要性,感受比在生活中的广泛存在,也为“比的应用”“比例”等后续学习做好铺垫。
教学目标:
在认真分析教材的基础上,结合学生实际,我从知识、能力、情感等方面拟定了本节课的教学目标
知识目标:经历从具体情境中抽象出比的过程,理解比的意义,能正确读写比,会求比值。
能力目标:培养学生自主学习、独立思考,能利用比的知识解决一些生活中的数学问题。
情感目标:引导学生广泛联系生活实际,充分感受数学知识的美与乐趣,激发学生的求知-。
重点难点:
基于教学目标我确定了本课的教学重难点。
重点:理解比的意义,正确读写比,会求比值。
难点:理解比的意义。
二、说学生
有的学生在生活中已经接触或使用过比,并有一些相关的活动经验。但学生对比的理解仅仅停留在形式上。教学中力求通过丰富的情境帮助学生达成对比的真正理解。为此设计了具有挑战性的问题让学生思考、讨论,使学生逐步体会比的意义和价值。
三、说教法、学法
新课程标准指出:教师是学习中的组织者、引导者、合作者。根据这一理念,我以“情境”和“探索活动”两条线索贯穿于课堂。设计了如下的教学过程
教学过程:
一、创设情境,导入新课
课堂教学情境的创设是为了激发学生的学习积极性。开课伊始,用淘气帅气的个人照吸引学生的注意力。熟悉的情境,直接的导入,简洁明了。
二、探究新知,构建模型
探索是数学教学的生命线,倡导探索性学习,引导学生体会知识的探索过程是当前数学教学的理念。为了突破教学重点,让学生经历从具体情境中抽象出比的意义的过程,我设计了以下三个情境。
情境一:比形状
让学生仔细观察照片,思考问题:哪些照片与照片a比较像?学生很容易辨别出a,b,d像;c,e不像。对长与宽的关系产生了直观感受。紧接着将照片画在方格纸上,引导学生探索这些长方形长与宽之间的关系。为了减少学生探究的盲目性,先引导学生观察明确1格就是1,照片a在方格纸上的长是6,宽是4。让学生在小组里探究这些照片的长和宽之间有什么关系?学生各抒己见,互相交流,并将数据整理到表格中。通过比较,发现a、b、d长除以宽都得1.5。
像这样表示两个数相除的关系还有一个新名字,叫做比。这时我采用直接告知的方法,水到渠成。在课堂中,培养学生的阅读能力同样是数学教师的责任。于是,接下来就让学生阅读书本第68页中比的概念、比的读法和写法,并了解比的来历,品味数学文化。
通过数形结合,学生对“比”有一些体验,同时借助图形的分类使学生体会引入比的重要性。
情境二:比速度。
孩子们,看看谁快?引导学生思考:要比谁快,比什么呢?怎么算?速度=路程÷时间。经过计算,学生惊讶的发现:马拉松运动员真了不起!跑步的速度比骑自行车的还快。学生体会到:路程与时间相除又叫做路程与时间的比,这个比值就是速度。进一步理解比的意义。
情境三:比价格。
在购物的情境中,学生独立完成表格。体会到总价与数量相除又叫做总价与数量的比,这个比值就是单价。
通过三个情境的教学,学生在探索活动中多次体会比的意义,突破了教学难点。
三、拓展运用,巩固新知
练习是掌握知识,形成技能,发展智力的重要环节。根据学生的年龄特点和认知规律,本着趣味性、思考性、综合性相结合的原则,由易到难,由浅入深,力求体现知识的纵横联系。我设计如下三个活动
1、写一写、算一算的活动中,学生进一步理解“比的意义”,练习比的读法、写法和计算方法。
2、在说一说的活动中,学生尝试用比的意义来解释生活中的现象。
3、在福尔摩斯侦探术的活动中,提高学生运用新知解决实际问题的能力。
四、质疑总结,反思提升
课堂总结是学生对今天学到知识的回顾和再现,让学生总结,学生质疑!最后课外阅读中,和学生区分篮球比赛中的“比”与我们这节课学习的比的不同。延伸课堂,学生真正体会“学无止境”。
板书设计:
最后,我来说说我的板书设计。在板书设计上,我力求简洁扼要,突出重点,帮助学生理解和建构知识体系。
生活中的比
两个数相除又叫两个数的比。
长和宽的比6 :4 =6 ÷4 = 6/4 = 1.5
前项:后项、比值
六年级上册人教版数学教案篇6
教学内容:
教材第59页及相关题目。
教学目标:
1、在前面所学轴对称图形的基础上,进一步认识圆的轴对称特性。
2、培养学生的动手操作能力,加深对所学平面图形的对称轴的认识。
3、培养学生观察周围事物的兴趣,提高观察能力。
教学重点:
认识圆的对称轴。
教学难点:
用圆设计图案的方法。
教学准备:
多媒体课件、圆规、直尺等。
教学过程:
学生活动(二次备课)
一、复习导入
1、课件出示轴对称的物体,想一想:这些图形有什么特点?让学生观察图形,找出这些图形的特点。
师生共同回顾总结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的直线叫做这个图形的对称轴。
2、你能画出下面两个圆的对称轴吗?能画多少条?学生尝试画出圆的对称轴,并观察。你发现了什么?
学生汇报后师生共同总结:圆有无数条对称轴,每一条过直径所在的直线都是它的对称轴。
3、导入:我们可以利用圆的.这一特点去设计很多漂亮图案来装点、美化我们的生活。本节课我们继续研究有关圆的知识。
二、预习反馈点名让学生汇报预习情况。
(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
1、设计美丽图案——花瓣。
(1)课件出示教材第59页最上方的图片。观察思考:4个花瓣由几个半圆组成,这几个半圆的圆心分别在哪里?半径怎么找?
(2)想一想,自己尝试画一画。可参考课本第59页的步骤。
(3)交流画法。在讲述过程中要重点说出:圆心的位置在哪里,是如何找到的?半径是如何找到的?学生讲述,教师在黑板上画。
小结:画图时首先要找出图中包含的各个圆或半圆,找到它们的圆心、半径。
2、设计美丽的图案——风车图。
(1)观察图案,想一想如果画这个图案,应按怎样的步骤。
(2)在小组内交流后动手完成。展示自己画出的图案,并说一说画图步骤:
①先画一个圆,在圆内画两条互相垂直的直径。
②分别以这4个半径的中点为圆心,以大圆半径的一半为半径向同一方向画半圆。
③把所画半圆涂上颜色。
3、设计美丽的图案——太极图。
指名说一说画太极图的步骤:
(1)画一个圆,在圆内画一条直径。
(2)分别以组成这条直径的两个半径的中点为圆心,以大圆半径的一半为半径,分别向上、下两个方向画半圆。把大圆分成上、下两部分。
(3)把圆的一半涂上颜色,如图所示。
四、巩固练习
1、完成教材练习十三第6题。
2、完成教材练习十三第8题。
3、完成教材练习十三第9题。
五、拓展提升
观察图案,说一说下面两个图案的画法。
六、课堂总结
让学生说一说这节课的收获。
七、作业布置
教材练习十三第7题和第10题的第1、4个图案。
画一画,看一看,想一想。教师根据学生预习的情况,有侧重点地调整教学方案。在小组内交流后再汇报。观察图案,找到各个圆、半圆的圆心和半径。观察图案,想一想,说一说,画一画首先要对图案进行“分解”,知道每一部分是怎么来的。难度较大,可在课下完成。
教学反思
成功之处:本节课学生通过观察、操作、比较、思考、交流、讨论等一系列活动,主动获取知识,并且体会到探索之趣,经历成功之乐,培养了学生的学习兴趣,发展了学生的能力。不足之处:学生的创新能力没有体现。教学建议:教学时,在学生掌握了基本方法后,让学生用自己的思维方式自由开放地去创造,以张扬他们的个性,培养他们的动手操作能力和创新能力。
六年级上册人教版数学教案篇7
单元目标:
1.理解并掌握分数除法的计算方法,会进行分数除法计算。
2.会解答已知一个数的几分之几是多少求这个数的实际问题。
3.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4.能运用比的知识解决有关的实际问题。
单元重点:
理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题
单元难点:
理解分数除法的算理,列方程解答分数除法问题
第一课时:分数除法的意义和分数除以整数
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × ×
× ×6 ×
二、新知探究
(一)、教学例1
1、课件出示自学提纲:
(1)出示插图及乘法应用题,学生列式计算。
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
2、学生自学后小组间交流
3、全班汇报:
100×3=300(克)
a、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
b、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
×3= (千克) ÷3= (千克) ÷3=3(盒)
4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:
分数除法的意义与整数除法相同,都是已知两个因数的积与其
中一个因数,求另个一个因数。都是乘法的逆运算。
(二)、巩固分数除法意义的练习:p28“做一做”
(三)、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
a、 ÷2= =,每份就是2个。
b、 ÷2= × =,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、当堂测评(课件出示)
1、计算
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
2、解决问题
(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?
(2)、正方形的周长是4/5米,它的边长是多少米?
学生独立完成。
教师讲评,小组间批阅。
四、课堂总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
教学后记
第二课时:一个数除以分数
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
2、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3,
1、实物投影呈现例题情景图。
理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2× ×3
(5)综合整个计算过程:2÷ =2× ×3=2×
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、p31“做一做”的第1、2题。
2、练习八第2、4题。
学生独立完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
设计意图:
这两节课的教学我从以下着手:
1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。
2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。
教学后记
第三课时:练习课
第四课时:分数混合运算
教学目标:
1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、通过练习,培养学生的计算能力及初步的逻辑思维能力。
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。
教学重点:确定运算顺序再进行计算。
教学难点:明确混合运算的顺序。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。
(1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4
(3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)
3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?
二、新知探究
1、教师课件出示例4
2、课件出示自学提纲:
(1)例4中的哪些条件和复习中的3相同?问题相同吗?
(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……
(3)尝试说说自己的解题思路并解答。
3、学生根据提纲尝试解题。
4、全班汇报
(1)根据学生的回答,归纳出两种思路:
a、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。
b、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
(2)说说运算顺序,再进行计算。
(1)计算1/5÷(2/3+1/5)×15
让个别学生说出运算顺序并计算题目的得数。
教师巡回指点,搜集存在问题。
教师黑板出示问题,学生上台改正,并说明理由。
(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。
三、当堂测评
练习九第1、2、3题:
注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6
楼楼板到地面的高度实际上只有5层楼的高度。
学生独立完成教师点评,解决疑难。
学生相互得分,评选优胜小组。
四、课堂小结
这节课有什么收获?说一说。
还有什么不懂的?提出来小组内解决。
设计意图
1、在课初始,我便从复习整数及小数的运算顺序入手,
重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发
现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练
习加强计算的训练。
2、当堂测评题将学生置于提高之处,联系实际生活解决问
题,让学生体会到数学知识的广泛性和严谨性
教学后记
第五课时:练习课
已知一个数的几分之几是多少求这个数的应用题
教学目标:
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学难点:
分数除法应用题的特点及解题思路和解题方法。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、根据题意列出关系式。
(1)一个数的3/4等于12.
(2)男生人数的11/12等于220人。
(3)甲数的5/8是40.
(4)乙数的4/5刚好是1/6.
2、解决问题
根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的.体重为35千克,他体内的水分有多少千克?
(1)看看题目中所给的三个条件是否都用得上,并说说为什么。
选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重× =体内水分的重量
(2)指名口头列式计算。
二、新知探究
(一)教学例1.
1、课件出示自学提纲:
(1)这一例题和复习中的题有什么不同和相同呢?想一想。
(2)有几个问题?都和哪些条件有关?
(3)读题、理解题意,并画出线段图来表示题意
(4)独立解决第一个问题。
2、全班汇报
(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。
小明的体重× =体内水分的重量
(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。
(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)
(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)
3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?
(1)启发学生找关键句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)
爸爸的体重× =小明的体重
①方程解:解:设爸爸的体重是χ千克。
χ= 35
χ=35÷
χ=75
②算术解:35÷ =75(千克)
4、巩固练习:p38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、当堂测评(课件出示)
1、根据题意列出算式,不必计算(每题15分)。
(1)一个数的2/5是40,这个数是多少?
(2)一个数的3/8是24,这个数是多少?
(3)甲数是100,占乙数的4/5,乙数是多少?
(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?
2、解决问题(40分)。
某校有女生160人,正好占男生的8/9,男生有多少人?
学生独立完成,教师巡回指点,注重学困生的提高。
小组内订正、互评,做到兵强兵。
四、课堂总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。
设计意图:
本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。
教学后记:
六年级上册人教版数学教案篇8
【教学目标】
1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。
2.会在方格纸上用“数对”确定物体的位置。
3.发展空间观念,初步体会到数形结合的思想。
4.体会生活中处处有数学,提高运用知识解决实际问题的能力。
【教学重点】
使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。
【教学难点】
在方格纸上用“数对”确定位置。
【教法】
情境教学法,创设找图书管理员的情境,激发学习兴趣,感知确定位置的方法。
【学法】
积极参与法,在学习过程中积极思考,理解用数对确定位置的方法,并积极参与动手操作活动,提高看图能力。
【教学准备】
多媒体课件
【教学过程】
一、谈话导入
1.师生谈话。
学校让我们班推荐一位同学到学校图书室做图书管理员,老师已经选好了,那么你们想不想知道这位同学是谁吗?
这位同学在班级中的位置是第三组的。你们知道这位同学是谁吗?他可能是哪几位同学?如果要找到这位同学,还要知道什么条件?
这位同学的.座位是在第3排,大家知道这位同学是谁吗?
2.导入新课。
今天这节课,我们就一起来学习确定位置的方法。
板书课题:用数对确定位置
?设计意图:通过谈话中引入数学问题,充分调动了学生的学习兴趣和积极性,为学习新知奠定了基础。】
二、探索新知
1.教学例1。
(1)出示例题1教学图。
让学生观察图,说说张亮同学坐在第几列?第几行。
(竖排叫做列,横排叫做行)
(2)张亮同学坐在第2列,第3行。用数对来表示(2,3)。
(3)让学生用数对表示王艳和赵强的位置。
王艳(3,4)赵强(4,3)
(4)小结。
确定一个同学在教室的位置,要考虑两个要素:第几列和第几行。
?设计意图:通过具体的实例引导学生认识第几列第几行的判断方法,经历应用数学知识分析问题的解决问题的过程】
2.完成第3页的“做一做”。
课件出示电和电影票的图片。出示题目:举出生活中确定位置的例子,并说一说确定位置的方法。
(电用电影票来确定位置,电影票一般都写着“几排几号”,“排”表示行,“号”表示列。比如“3排7号”用数对表示是(7,3)。
?设计意图:从学生熟悉的情景出发,选择学生感举的事物,提出相关问题,激发学生学习兴趣。】
3.教学例2。
(1)认识方格图。
出示动物园示意图。
指导学生观察图。
这幅动物园示意图与以前见过的示意图有以下几点不同:一是动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容;二是表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上;三是方格纸的竖线从左到右依次标注了0,1,2,…,6;横线从下往上依次标注了0,1,2,…,6,其中的“0”既是列的起始,也是行的起始。
(2)用数对表示图中各场馆的位置。
提问1:我用了数对(3,0)来表示大门的位置,你们知道我是怎样想的吗?
?大门在示意图中处于“竖线3,横线0”的位置上,所以可以用数对(3,0)来表示】
你们能用数对表示其他场馆所在的位置吗?
?熊猫馆(3,5)大象馆(1,4)猴山(2,2)海洋馆(6,4)】
(3)根据数对标位置
在图上标出下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。
?设计意图:通过具体的事例认识和理解位置与坐标中数值的对应关系,让学生不但会用数对描述现实生活中的位置,还会描述坐标图上的物体的位置。】
三、巩固运用
1.小游戏:看谁反应最快。
老师说出一组数对,相应的同学要在3秒内起立。
2.做一做。(课件出示)
?设计意图:通过练习,培养学生分析问题、解决问题的能力,加深对知识的理解和应用。】
四、课堂总结
这节课我们学习如何用数对来确定位置,用数对确定位置时,数对中的前一个数表示第几列,后一个数是表示第几行。
五、板书设计
用数对确定位置
竖排叫做列从左往右
横排叫做行从前到后
张亮坐在第2列第3行(2,3)
(列,行)