分数乘除法教案6篇

时间:2024-05-01 10:36:54 分类:工作计划

制定有趣有趣的教案能够增加学生对学科的兴趣和学习的动力,教案能够通过设计有趣的教学活动和内容,激发学生的学习动力和自信心,下面是淘范文小编为您分享的分数乘除法教案6篇,感谢您的参阅。

分数乘除法教案6篇

分数乘除法教案篇1

设计说明

分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:

1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

2.重视对相关概念、性质及某些知识间相互关系的复习。

教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。

3.重视对学生解决问题能力的培养。

教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。

课前准备

教师准备ppt课件

教学过程

⊙整理复习

1.结合教材习题,复习分数乘、除法的意义,计算方法及一些特殊规律。(板书课题)

(1)(出示课件)先想一想分数乘、除法应该怎样计算,再计算下面各题。

×=×=×18=

÷=÷=21÷=

÷=÷=×=

①复习分数乘法的计算方法。

(分子与分子相乘的积作分子,分母与分母相乘的积作分母。能约分的可以先约分再计算)

②复习分数除法的计算方法。

[甲数除以乙数(0除外)等于甲数乘乙数的倒数]

③生独立计算。

④观察左边两列算式,你能发现乘法与除法之间有什么规律吗?

(乘法与除法是互逆运算)

(2)结合×和×18复习分数乘法的意义。

(一个数乘分数表示求这个数的几分之几是多少;一个数乘整数表示求几个相同加数的和的简便运算,与整数乘法的意义相同)

(3)结合÷和21÷复习分数除法的意义。

(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算)

(4)复习分数四则混合运算。

①分数四则混合运算的运算顺序是怎样的?

(与整数四则混合运算的运算顺序相同)

②下面各题怎样简便就怎样算,并说一说算理。

+++

15×

+3÷

3.7×+1.3÷

÷

0.5×

2.复习倒数的意义及相关知识。

(1)什么叫倒数?0为什么没有倒数?

(乘积是1的两个数互为倒数。因为0和任何数相乘都等于0,所以0没有倒数)

(2)写出下面各数的倒数。

51

(3)判断下面的说法是否正确。

①一个真分数的倒数一定比这个真分数大。()

②一个数乘分数的积一定比原来的数小。()

③一个数除以分数的商一定比原来的数大。()

3.复习比的意义及相关知识。

(1)(出示课件)说出下面每个比的前项、后项。

2∶50.6∶0.3

(2)结合上题,复习比的意义及比的各部分名称。

(两个数相除又叫做两个数的比,比号前面的数叫做比的.前项,比号后面的数叫做比的后项)

(3)复习比值的意义及求法。

(比的前项除以比的后项,所得的商叫做比值)

(4)复习比与分数、除法的关系。

(根据学生的回答进行对比复习。比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商)

分数乘除法教案篇2

1、 分数除法

(1)分数除法的意义和整数除以分数

教学目标:

1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教学过程:

一、复习

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:56=30,写出相关的两个除法算式。(305=6,306=5)

2、口算下面各题

36

二、新授

1、教学例1

(1)出示插图及乘法应用题,学生列式计算:1003=300(克)

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

a、3盒水果糖重300克,每盒有多重?3003=100(克)

b、300克水果糖,每盒100克,可以装几盒?300100=3(盒)

(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

3=(千克)3=(千克)3=3(盒)

(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的'逆运算。

2、巩固分数除法意义的练习:p28做一做

3、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

a、2==,每份就是2个。

b、2==,每份就是的。

(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察2和3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、练习

四、总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

分数乘除法教案篇3

【学习目标】

1、能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养自己的语言表达能力和抽象概括能力。

3、养成良好的计算习惯。

【学习重难点】

1、重点是抽象概括出分数除法的计算法则。

2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。

【学习过程】

一、复习

1、列式,说清数量关系。

小明2小时走了6 km,平均每小时走多少千米?____________________________

速度=路程÷时间

2、计算:151×4 ×3 ×2 ×6 971215

8352÷4 ÷3 ÷2 ÷6 9765

二、探索新知

1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?

2、探究2÷

(1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3

(2) 动手画线段图表示已知条件与问题的关系。

1小时走的路程,再将线段平均分成3份,其中2份

表示的就是2小时走的路程。 3

(3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?

2要怎样计算?它把除法转化成什么?怎样转化? 3

55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷

4、通过上面的2道计算题,你发现了什么?你会用自己的方式表示下你发现的规律吗?

______________________________________________________________

三、知识应用:独立完成p31“做一做”的`第1、2题。(组长检查核对,提出质疑。)

四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数乘除法教案篇4

教材分析

理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

学情分析

分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

教学目标

1.通过具体的问题情境,探索并理解分数除法的计算方法。

2.能正确地进行分数除法的计算。

3.培养学生分析、推理能力。

教学重点和难点

教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

教学难点:分数除以整数计算法则的推导过程。

教学过程

一、创设情景,教学分数除法的意义

1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

(1)每盒水果糖重100g,那么3盒有多重?

100×3=300(g)

(2)3盒水果糖重300g,那么每盒有多重?

300÷3=100(g)

(3)300g水果糖,每盒重100g,可以装几盒?

300÷ 100=3(盒)

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1)引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/5。

师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

4/5÷2

请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

4/5÷2=4÷2/5=2/5

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

4/5÷2=4/5×1/2=2/5

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

能再讲讲这样做的道理吗?

师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/5的多少?

通过直观图理解4/5的1/3是4/15

(3)比较归纳,发现规律。

分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

结果最简。除号要变成乘号。

三、巩固练习

学生独立完成

四、课堂小结

1、分数除法的意义是什么?

2.分数除以整数的计算法则是什么?(学生总结)

五、作业布置

分数乘除法教案篇5

教学内容

北师大版小学数学五年级下册第五单元分数除法(二)第一课时

教学目标

1.借助实际操作和面积模块,进一步理解分数除法的意义和基本算理。

2.掌握一般分数除法的计算方法,并能正确计算。

教学重点

一个数除以分数的计算方法。

教学难点

分数除法的基本算理。

教学方法

自主、合作、探究

教学过程

一、课前复习、引入新课

由值日班长主持复习上节课(分数除法一)内容。

(1)提问。

(2)1分钟口算练习。

?设计意图:让孩子主持完成课前复习是为了把课堂的主动权从开始就交给孩子们,体现生本教育理念。这样做,不但能激发孩子的学习数学的兴趣,还能提高孩子们听课的效率,锻炼表达能力和思维能力。】

教师借势引入新课,板书课题——分数除法(二)。

二、目标导学

师:下面一起来看本节课的学习目标。(平板阅读)

1.借助实际操作和面积模块,进一步理解分数除法的意义和基本算理。

2.掌握一般分数除法的计算方法,并能正确计算。

师:以上两个目标还得靠同学们的自学,小组内团结协作完成。有信心吗?

?设计意图:学孩子们明确本节课的学习任务及目标,有目的的去学习】

导学质疑

分一分、说一说、算一算。

师:课前,老师准备了这样一道题目:有4张同样大小的饼,如果1张1份,能分得几份?2张1份能分得几份?张1份呢?张1份呢?

?设计意图:为任务一、任务二做铺垫,让学生顺势、快速完成任务一。】

根据学生回答情况平板出示任务一:

根据自学单上第一题中四个问题列出算式,不计算。

?设计意图:任务一是根据教师的提问让孩子们顺势完成四道题目列式,注重学生审题,理解能力,解决问题策略的培养。】

出示任务二:

圈一圈,画一画,写出每道算式结果,并用平板拍照上传。

想一想、说一说,你发现了什么?

3.对任务二进行质疑提问。

孩子们完成拍照上传后,教师随意抽取2-3幅作品进行点评,点评中以孩子讲解为主。讲解中重点质疑计算结果是怎么得出来的:

师(或生):4÷=8,4÷=12,你是怎样算出来的?(孩子们的回答可能有:除以一个不为零的数等于乘这个数的`倒数;根据画图结果得出来的等)

师引导借助作品中的图片:如果每张1份,每张饼可以平均分成几份?(孩子们在操作的基础上会很快说出2份,4张饼共可分为8份,这样也会得到4÷=8)

教师板书:4÷==4×2=8份

4÷=12是怎样得到呢?

由4÷==4×2=8份很快会说出4÷=4×3=12份。

师点拨:有同学说:“除以一个不为零的数等于乘这个数的倒数”这句话你们认为有道理吗?结合刚才的画图过程,说一说。

根据孩子们的表述,教师强调,从图中可以看出,把4张饼张1份,共可以分成8份,也就是4个2是多少,就是4×2=8,所以4÷=与4×2是相等的,所以:“除以一个不为零的数等于乘这个数的倒数”表述是正确的。(教师:板书,除以一个不为零的数等于乘这个数的倒数)

为什么要除以“一个不为零的数”呢?(强调除数不能为零)

?设计意图:任务二的重点“除以一个不为零的数等于乘这个数的倒数”这句话,总结出分数除法的一般计算方法,理解分数除法的算理。探究中,借助图形的操作让孩子们掌握并理解分数除法的算理,知道4÷==4×2的原因。任务中,让孩子们先通过自学找出答案,在教师的引导中思考结果是怎样得到的?从而达到对算理的质疑,让学生借助图形理解并掌握“除以一个不为零的数等于乘这个数的倒数”的真正含义。另外,对于完成任务早的同学,给他们时间在小组内进行交流,让他们有事可做。】

出示任务三:

填写自学单表格,根据长方形面积模块,理解“除以一个不为零的数等于乘以这个数的倒数”。用平板拍照上传。

待孩子们完成表格后,将上传的作品抽样点评并质疑提问:

师:从表格中你发现了什么?(可能回答有:宽不变,面积在变,“除以一个不为零的数等于乘这个数的倒数”等,对“除以一个不为零的数等于乘这个数的倒数”这句话进行重点的强调。)

通过一体机放大功能演示,借助长方形面积模块进一步理解分数除法的计算方法和算理。

?设计意图:任务三的重点是借助长方形的面积模块进一步理解分数除法的算理和计算方法,在质疑讲解中利用一体机图形的扩大功能,将长方形变化图进行展示讲解,让孩子们从图中理解“除以一个不为零的数等于乘这个数的倒数”这句话。】

任务四:

小组长负责,安排三位同学在一体机上完成,其他同学在作业本上完成。完成后小组内说一说进行分数除法计算时要注意些什么?点名的同学拍照上传。

让孩子们在一体机上完成任务,并要求点名的同学拍照上传,解答疑难,全班共享。

?设计意图:通过任务四的学习,让孩子们理解分数除法计算方法的基础上,反思学习过程注意的问题,保证计算的正确性、准确性。任务四以一体机演示和交流反思的形式进行,先在小组内交流展示计算方法,然后全班反思、交流注意的题。】

三、巩固训练

判断正误(在平板上手写完成并上传)

在点评中,由孩子们说出对错的理由,进一步理解“除以一个不为零的数等于乘这个数的倒数”。

四、小结评价

1.孩子们畅谈本节的收获。

2.教师对小组学习情况进行评价。

分数乘除法教案篇6

一、复习

1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

如果已知265×362=95930,你能说出答案吗?为什么?

(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

二、教学分数除法的意义

1、2/7 ×( )=1,括号内填几分之几?为什么?

2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

(引导说出分数除法的意义)

3、完成p25做一做

三、分数除以整数的计算法则

1、这节课我们学习分数除法

2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

你是根据什么知识口算这几道题的?

4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)

怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

根据学生的回答板书:

3/4÷3 = 3÷34 = 1/4

你能归纳这种分数除以整数的计算方法吗?

5、用这种方法口算:

3/4÷3 4/9÷4 10/9÷5 6/7÷2

6、质疑

你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

7、小组讨论,自主学习分数除以整数

用学生所举的'例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

(1)分数除以整数,用分子除以整数的商作分子,分母不变。

(2) 1除以一个分数,结果是该分数的倒数。

(3)一个分数除以1,结果是原分数。

你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

8、小组汇报

(1)1/5 ÷3=3/15 ÷3=1/15

(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

(4) ……

你能归纳自己小组讨论的分数除以整数的计算方法吗?

(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

(4)……

9、观察第三种方法:

1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

这个计算过程还可以更简洁些,你能看出来吗?

化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

(引导学生说出分数除以整数,等于分数乘整数的倒数)

10、计算方法的优化

刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

学生计算后提问:你喜欢那种方法?为什么?

总结分数除以整数的计算法则:

分数除以整数(零除外),等于分数乘整数的倒数。

11、对其他的方法,你又有什么要说的吗?

(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

四、课堂练习

1、计算下列各题

2/3÷3 2/11÷2 3/8÷6 5/4÷2

2、练习七第1题

3、讨论题

1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

《分数乘除法教案6篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭