六年级上册数学教案模板8篇
一篇优秀的教案是要求教师对教学过程进行反思和总结,增强他们的教学改进意识,教案可以帮助教师设计有效的教学评估和反馈方式,下面是淘范文小编为您分享的六年级上册数学教案模板8篇,感谢您的参阅。
六年级上册数学教案篇1
教学目标:
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学难点:
分数除法应用题的特点及解题思路和解题方法。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、根据题意列出关系式。
(1)一个数的3/4等于12.
(2)男生人数的11/12等于220人。
(3)甲数的5/8是40.
(4)乙数的4/5刚好是1/6.
2、解决问题
根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?
(1)看看题目中所给的三个条件是否都用得上,并说说为什么。
选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重× =体内水分的重量
(2)指名口头列式计算。
二、新知探究
(一)教学例1.
1、课件出示自学提纲:
(1)这一例题和复习中的题有什么不同和相同呢?想一想。
(2)有几个问题?都和哪些条件有关?
(3)读题、理解题意,并画出线段图来表示题意
(4)独立解决第一个问题。
2、全班汇报
(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。
小明的体重× =体内水分的重量
(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。
(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)
(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)
3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?
(1)启发学生找关键句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)
爸爸的体重× =小明的体重
①方程解:解:设爸爸的体重是χ千克。
χ= 35
χ=35÷
χ=75
②算术解:35÷ =75(千克)
4、巩固练习:p38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、当堂测评(课件出示)
1、根据题意列出算式,不必计算(每题15分)。
(1)一个数的2/5是40,这个数是多少?
(2)一个数的3/8是24,这个数是多少?
(3)甲数是100,占乙数的4/5,乙数是多少?
(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?
2、解决问题(40分)。
某校有女生160人,正好占男生的8/9,男生有多少人?
学生独立完成,教师巡回指点,注重学困生的提高。
小组内订正、互评,做到兵强兵。
四、课堂总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。
设计意图:
本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。
六年级上册数学教案篇2
教学内容:
教材第36页例7、“练一练”,第39页练习六第16~21题,思考题。
教学目标:
1.使学生经历“找乘积是1的两个数”和“找一个数的倒数”的过程,认识和理解倒数的意义,掌握求一个数的倒数的方法。
2.使学生在认识互为倒数的两个数的特点的过程中,发展观察,比较和抽象、概括等思维能力。
教学重点、难点:
理解倒数的意义,学会求一个数的倒数。
教学过程:
一、导入新课
谈话:同学们,“朋友”这个词对我们来说已经非常熟悉了,能说说教室里哪些同学是你的朋友吗?
指名回答。
谈话:在将近六年级学习生活中,很多同学生建立了深厚的友谊,“朋友”是两个人之间的一种关系,在数学中,数与数之间也存在一些关系,比如两个数的乘积是1,就可以说是这两个数之间的一种关系。哪些数之间有这种关系呢?怎样找这样的两个数呢?这是我们今天要研究的问题。
二、学习新知。
1、理解倒数的意义。
(1)出示例7,学生独立完成。
(2)引出概念。
乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。
引导:请大家仔细观察,刚才我们找出的这些算式有什么共同特点?
学生交流后明确:这些算式里两个数的乘积都是1.
指出:像这样乘积是1的两个数互为倒数。
(3)学生举例来说。进行及时的评议。
(4)追问:怎样的两个数互为倒数?为什么要说“互为倒数?”
小结:倒数不是指一个具体的数,而是表示两个数之间的一种关系,当两个数乘积是1时,这两个数互为倒数。
2、归纳方法
(1)提问:我们已经知道了乘积是1的两个数互为倒数,你能分别找出和的倒数吗?
提问:观察上面互为倒数的各组数,它们的分子和分母位置发生了什么变化,把你的发现与同桌交流。小组讨论:引导观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?
指名回答:找一个分数的倒数只要交换分子、分母的位置。
追问:0有倒数吗?为什么?1呢?
指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。1的倒数是1。
除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
三、巩固练习。
1、做练习六第17题。
学生分别说出每个数的.倒数,并选择几个数说说是怎样想的。
2、做练习六第18题
学生独立宛成,再集体交流,选择两题让学生说说思考的过程。
3、做练习六第19题
练习之前明确要求:观察每组的3个数有什么共同点,写出的倒数又有什么共同点,带着问题边写边观察。
全班交流结果,板书每组里各数的倒数。
提问:你发现每组数和它们倒数的特点了吗?把你的发现和大家交流。
提出:从这四组数可以看出:真分数的倒数是假分数,大于1的假分数的倒数是真分数;几分之一的倒数是几,几的倒数是几分之一。
4、做思考题。
启发:联系倒数的意义想一想,要使三个分数乘积是1,[板书:x×x×x=1]必段符合什么条件?
引导:通过交汉我们知道,三个分数乘积是1,其中两个分数的乘积和第三个分数互为倒数,你能在这七个分数里分别找出这样的3个分数吗?试着找找看。
学生先尝试练习,再集体交流。
四、全课总结
这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?
五、作业
补充习题。
板书计划:
倒数的认识
乘积是1的两个数互为倒数。
求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
六年级上册数学教案篇3
一、教材分析
教材分析是教师的一项重要基本功,是教师备好课、上好课的前提。首先我们来分析一下本节课在教材中的地位和作用。
(一)教材的地位和作用
本节课的内容是在学生学过分数的意义及分数与除法的关系、百分数的意义及应用的基础上进行教学的。比在数学中是一个重点也是一个难点,学生在理解比的意义上往往比较困难。于是教材并没有采取给出几个实例,就直接定义“比”的概念的做法,而是密切联系学生已有的生活经验和学习经验,设计了两类情境——数学情境和生活情境,一类情境是同类量的比较,另一类是不同类量的比较,接着引发学生的讨论和思考,并在此基础上抽象出比的概念,使学生感受到需要刻画两个量之间的数量关系,体会引入比的必要性以及比在生活中的广泛存在。这一系列情境也为学生理解比的意义提供了丰富的直观背景和具体案例。
(二)重点、难点与关键
在认真分析教材的地位和作用的基础上,还要根据教学要求和教材特点,结合学生实际,分析研究教材的重点、难点与关键,才能科学地组织教学内容,设计教学过程,有效地提高课堂教学效益。
1、重点:
理解比的意义,了解比的各部分名称。
2、难点:
理解比的意义,区分比与比值的区别。
3、关键:
提供多种情境,使学生经历从具体情境中抽象出比的意义的过程。
(三)教学目标
分析完教材的编写意图和确定教学的重、难点和关键点之后,我们才可以确定本节课的教学目标。
1、知识与技能目标;
(1)经历从具体情境中抽象出比的过程,理解比的意义,并能用准确的数学语言表述两个量的比。
(2)能正确读写比,了解比的各部分名称;理解比值的概念,能正确地求出比值。
(3)对比的应用有初步的感性认识。
2、过程与方法目标
结合具体的实例,引导学生在独立思考、实际操作和合作交流中,感受“比”产生的背景,理解“比”的意义。
3、情感、态度与价值观目标
通过学习,体会引入比的必要性以及比在生活中的广泛存在和应用。
(四)教具、学具的准备
针对小学生的思维是以形象思维为主,逐渐转向抽象逻辑思维的特点,我借助一下几种教具来辅助这节课的教学。
(1)多媒体课件
(2)每人两张测量表格
(3)多张“生活中的比”的图片。
二、教法分析
生活化的数学课堂就是要让学生在“生活”和“数学”的交替中体验数学,在“退”和“进”的互动中理解数学。通过“退回生活”,为数学学习提供现实素材,积累直接经验;再通过“进到数学”,把生活常识、活动经验提炼上升为数学知识。
本节课我主要使用情境教学法和引导发现法。首先通过创设系列情境,激发学生对比的知识的研究兴趣,引导学生退回“生活”,由浅入深地独立思考,在实际操作和合作交流中,体会生活中存在两个数量之间比的关系,再通过自学课本知识理解数学概念——比的意义,及尝试应用引导学生进到“数学”。最后则组织学生寻找生活中的比,引导学生把生活和数学有效结合起来。目的使学生对比有整体的认识,发展学生的思维能力和语言表达能力,调动学生的各种感官参与到学习活动中。而练习形式多样,使学生从多种方式理解比的意义。
三、说学法
主要采用观察法、自主探究—合作交流法、和实践操作法。首先通过系列情境让学生亲自动手测量和计算,找出两个数量之间比的关系,通过观察、讨论以及自学课本内容后总结出比的意义及相关的知识要点,然后再通过“运用脚掌的长度与身高的比,来计算身高”进一步激发学生对学习比的兴趣性和积极性,并巩固学生对“比的意义”的理解。这几种学法让学生能用数学视角来观察和思考,亲历探索过程。尤其是通过动口、动手、动脑,使学生在多种感官的协调活动中积累感性认识,从而更好地理解比的意义,突出重点,突破难点。
四、说教学过程
小学生的思维以具体形象思维为主,学习抽象的数学知识,必须在认识大量感性材料的基础上,形成经过表象达成理性认知的学习过程。为了全面完成本课的教学目标,体现出学生合作交流、自主探究的学习过程,我从如下几个程序开展教学。
(一)创设情景,感知比较的方法
首先出示情境1。
给同学们来一场“选美”比赛。不过这次“选美”比赛的对象有点特别。(教师出示规格分别是a:6×4、b:2×3、c:8×3、d:8×12、e:2×12五张淘气的照片,全班投票选出最美的几张照片,结果大多数学生都选a:6×4、b:2×3、d:8×12为最美的照片。
然后引导学生从数学的角度去观察和思考,为什么这3张照片最美,而其他两张不好看呢?“这里面有什么奥妙?是否跟数学有关联呢?”可贵的数学意识由此而生。如果没有了学生亲身的“选美”体验和经历,就不会有源自内心的思索和自问?就不会使学生将数学与生活审美的进行联系审视。
接着把这5张照片的形状画在方格纸上,引导学生探索这些长方形之间的关系,让学生意识到仅仅依靠让学生分组完成表1。
通过表1请学生解答了长是宽的几倍和宽是长的几分之几这两个问题并列式,根据学生列的除法算式,从而发现长方形长宽之间的倍数关系,明确是长和宽两个量在比,并使学生体会同类量比的意义。接着让学生画一个具有这样倍数关系的长方形,进一步丰富例证。通过数形结合,使学生对“比”有一些体验。同时,借助图形分类使学生体会引入比的必要性。
接着出示情境2。
情境2向学生提供了马拉松选手赛跑的路程和所用时间的数据,以及某人骑车的路程和所用时间的数据,让学生体会到比较谁的速度快,实际上就是要算出路程与时间的比,看哪个比值大。教学时,我先不出“比”这个词。而是先引导学生弄清题意后,自己填表得出速度,再说一说,怎样求速度,谁的速度快。
最后出示情境3。
情境3向学生分别提供了三个水果摊位出售苹果的价钱的情况,使学生体会到比较哪个摊位的苹果便宜,实际上就是要算出总价与数量的比,看哪个比值小。这里也先不出“比”这个词。而是先启发学生想一想,能不能直接比较哪个摊位上的苹果,怎样才能比较?引导学生独立思考、完成填表,再让学生说一说求单价的方法。
情境2和情境3,让学生感受到在同一背景下,总价和它相对应的数量之间存在固定的倍数关系,使学生体会不同类量比的意义。
利用分块式呈现信息材料,一是渗透要学会用“全面”的观点看待生活中出现的问题;二是创设不同背景下的数学问题情景;更重要的是引导学生在比较两个数量之间的关系时,逐步体验感悟出:单纯从绝对量的多少(比差)来比较是不够的,还要用相对量(比商)来比较。
(二)探究比的意义,揭示学习的主题
在以上3个情境的基础上,接着揭示课题,引出“比”的概念。因为六年级的学生已经具备一定的自学能力,于是,接下来就让学生自学书本第50页“认一认”中比的概念、比的读法和写法以及如何求比值,然后由学生汇报学习成果,进一步培养学生的自学能力和表达能力。在汇报比的概念的时候,我则着重引导学生寻找概念的重点词、重点意义和条件来加深对概念的理解和记忆。而比的概念中,关键字就是“相除”。
接着组织学生回顾前面情境中的有关数量关系,鼓励学生用比的方式说一说,写一写。先是由个别学生说,教师再对学生的表达进行规范,然后让学生在小组里互相说。然后,引导学生说出求比值的方法就是用前项除以后项。北京市教科院基础教育科学研究所研究员、国家数学课程标准研制组、北师大(新世纪)版数学实验教科书编写组的成员陶文中教授给我们指出:学生是否是真的掌握了所学知识,要做到三清——想清、写清和说清。“想清、写清”,绝大部分老师在教学过程中都是非常重视培养学生这一方面的能力,而“说清”却往往被忽略。这样不利于学生良好的数学素养的养成。于是,在我这节课中,我非常重视学生是否能用准确的数学语言表达3个情境中有关数量的比的关系,给予学生充分表达的机会与时间。
(三)巩固新知、拓展运用,深化理解比的意义
在学生想清和说清的基础上,为了让学生进一步内化知识,形成扎实的转化,发展能力,同时体现新课标倡导的“人人学有价值的数学;人人获得必需的数学;不同的人在数学上得到不同的发展”的新理念,我设计了以下三个层次的练习。
第一组:巩固性练习
1、读出下面各比,并求出比值。
(1)3:12(2)5/8(3)6:2/3(4)1/5:1/6
通过各种类型的比,使学生知道比的前项、后项的呈现方式是多种的,比值可以是整数、分数、小数。以及让学生仔细观察比与比值的区别,明确比表示两个数量之间的倍数关系,它是一个式子,而比值是一个数,这是很多学生往后比较容易出错的一个知识难点。
2、找比。
六(1)班有男生25人,女生21人。
男生人数与女生人数的比是( )。
女生人数与男生人数的比是( )。
通过这一题让学生弄清楚,究竟是谁与谁相比。
第二组:综合性练习
判断。
1、小强身高148厘米,小明身高12分米,小强和小明身高的比是148﹕12。
2、5÷4又可以说成5比4,又可以写成5/4。
通过这两道题,使学生明白两个量之间的比要统一单位。
3、体育比赛中的“4﹕0”的意义是什么?它是一个比吗?(让学生展开讨论,然后回答。)
还有的同学指出:从4﹕0这个比出发,根据求比值的方法,4﹕0=4÷0=?这个问题,根据除法中除数不能为0和分数中分母不能为0,得知比的后项不能是0,所以这个不是我们这节课所学的比。
第三组:发展性练习
1、从同学们非常喜欢的柯南破案故事入手。告诉同学们:(前不久,一个月黑风高的晚上,某珠宝店发生了一起特大失窃案,侦察员接到报警后立即赶到现场,这时罪犯已经逃走,现场只留下一个脚印)这时柯南来了,他仔细观察完现场后只是量了量脚印的长25厘米,就果断地推算出疑犯的身高。你们知道这里面有什么奥秘吗?你能算出这个疑犯的身高吗?这个故事挑起学生探究的热情和兴趣,引发学生对数学知识的联想和猜测,这可能与人的身高与脚印长(即脚长)之间的关系有关,于是紧接着鼓动他们展开研究和讨论,以小组为单位从自己身上进行研究,量一量,算一算,并提示学生将发现的关系用刚学到的比的知识来表示。这样教师就不用多费一句口舌,他们饱涨的热情和关注使得他们立刻就发现了其中蕴含的规律。
汇报交流中:教师随机板书几位学生身高与脚长的比及比值,当写到第5个时,下面就有学生喊了起来:“老师,我发现了一个规律:身高与脚长的比值都接近整数7!”
又有学生说:柯南就是用罪犯的脚印长度乘7来推算出疑犯的身高的。
接着,教师随即分别出示维纳斯女神雕像图片、芭蕾舞演员踮起脚尖的图片、我国的国旗图片及摔碎的古玩花瓶图片,从而引出美学中的比、国旗中的比及考古学中比的应用,给学生带来了一种新奇的体验,一种清新的熏陶。此时教师适时接上:其实,生活中有趣的比还有很多,感兴趣的话,可以去搜集搜集。从而将学生由课内引到课外。
(四)归纳小结,质疑问难
通过这节课的学习,你有什么收获?你对自己的表现满意吗?还有什么不清楚的问题吗?
五、板书设计
生活中的比
两个数相除,又叫做这两个数的比。
六年级上册数学教案篇4
教学目的:
1、通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2、对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。
教学重点:
掌握利息的计算方法。
教学难点:
正确地计算利息,解决利息计算的实际问题。
教学过程:
一、 导入
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
二、新课
1、 介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2、 阅读p99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。(例如:小丽20xx年月1月1日把100元钱存入银行,整存整取一年,到20xx年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的确1.8元,共101.8元。)
本金:存入银行的钱叫做本金。小丽存入的100元就是本金。
利息:取款时银行多支付的钱叫做利息。
税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。
利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读p99页表格,了解同一时期各银行的利率是一定的。
3、学会填写存款凭条。
把存款凭条画在黑板上,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额,、存种、密码、地址等,最后填上日期。
4、利息的计算。
(1)出示利息的计算公式: 利息=本金利率时间
(2)计算方法
按照以上的利率,如果小丽的100元钱存整取三年,到期的利息是多少?学生计算后交流,教师板书:1002.70%3=8.10(元)
(3)三年后取款,小丽能得到8.10元利息吗?为什么?
学生发表意见后,教师指出:1999国家规定存款时,要按利息的确20%缴纳利息税,你能再算一算如果你存入100元,3年后实际能得多少利息吗?
(4)学生计算后回答,教师板书
利息税金:8.1020%=1.62元 税后利息:8.10-1.62=6.48元
加上她存入本金100元,到期时她可以实际得到本金和税后利息一共是106.48元。
5、练习。
(1)完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。
(2)完成练习二十三的第9题。
教学总结:
折扣、纳税、利息是百分数在生活中的具体应用,与人们的生活密切相关。其中,折扣是学生们日常生活最熟悉的,教学中,我没有剥夺孩子们想说的权利,让他们自由地来说说他们对折扣的理解,并引入商品打折销售的情境,解决与之相关的实际问题。但教学中我没有说清楚几折就是十分之几,因此个别孩子对于七五折这样的'概念还不是很清楚。而纳税和利率,则主要是通过公式的掌握教给孩子解题的方法。
六年级上册数学教案篇5
知识能力
引导学生用所学知识解决生活中的存款问题。
过程方法
自主探究法
情感态度
培养学生热爱数学,热爱生活的思想。
教学重点:
引导学生用所学知识解决生活中的存款问题。
教学难点:
能根据利率表找到存款的最优方案。
教学准备:
教师准备近期银行的利率表。
学生准备近期银行的利率表。
教学思路:
1.出示存款利率表和妈妈有现金人民币2万元,要按定期存入银行,想年这一条件。学生以小组为单位设计有几种不同的存款方案,并把不同的方案表中。
2.学生汇报不同的存款方案,教师引导学生用简单的数学符号有序地表示不同案。
3.选择其中一种方案,学生独立计算到期后的实得利息。
4.以小组为单位计算其它存款方案到期后的实得利息。
5.比较不同的存款方案到期后的实得利息,谈自己的想法。
教学过程:
一、了解利率表,小组合作完成设计方案。
用计算器算
方案一:现存三年,然后用本金加上利息200003.24%3=1944(元)。
税后利息:1944(1-20%)=1555.2(元)。
再存期一年后,税后利息:(20000+1555。2)2.25%(1-20%)=387.99(元)。
4年期满时:1555.2+387.99=1943.19(元)。
二、学生汇报不同的存款方案,教师引导学生用简单的数学符号有序地表示不同的方案。
方案一:3,1
方案二:1,1,1,1
方案三:1,1,2
方案四:1,2,1
方案五:1,3
方案六2,2
方案七:2,1,1
三、选择其中一种方案,学生独立计算到期后的`实得利息。
用计算器算
方案一:现存三年,然后用本金加上利息
分层作业:
完成70页的连一连
板书设计:
存款方案
方案一:3,1
方案二:1,1,1,1
方案三:1,1,2
方案四:1,2,1
方案五:1,3
方案六2,2方案
方案七:2,1,1
课后反思:
得:学生能积极参与到课堂教学中来,课堂气氛活跃。
失:学生的策略不够全面。
设想:应注重学生方法的训练,让学生使用计算器计算。加强学生实践活动能力养,适当设计相关题目的训练。
六年级上册数学教案篇6
教学目标:
1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。
2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。
3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。
教学重难点:
圆周率意义的理解和圆周长公式的推导。
教学设想:
新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。
接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]
教学具准备:
多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。
教学过程:
一、创设情境,提出问题
1、创设情境。
这节课,老师要和同学一起探讨一个有趣的数学问题。
媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。
2、迁移类推。
引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。
(1)要求唐老鸭所跑的路程实际就是求什么?
(2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)
(3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)
3、提出问题。
看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。
梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?
[设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。]
二、自主参与,探究新知。
1、实际感知圆的周长。
让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。
2、明确圆周长的意义。
引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)
(1)圆的周长是一条什么线?
(2)这条曲线的长就是什么的长?
(3)什么叫做圆的周长?
学生讨论互补,概括出围成圆的曲线的长叫做圆的周长(显示字幕)
[设想:让学生动手摸一摸圆的周长,初步感知周长是一周的长度,再动口说一说培养学生把思维过程转化为外部语言更增强对圆周长的感性认识。在学生对圆周长有了较强的感性认识后,体验及形象理解圆周长的意义。]
六年级上册数学教案篇7
教学目标:
知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,理解在同一个圆内直径与半径的关系。
能力目标:让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。
德育目标:让学生养成在交流、合作中获得新知的习惯。
教学重点:
探索出圆各部分的名称、特征及关系。
教学难点:
通过动手操作体会圆的特征。
教具准备:
硬币、线绳、图钉、铅笔头、圆规、课件。
教学过程:
一、创设情境、激发兴趣:
1、创设情境
师:同学们,你们喜欢运动会吗?老师今天给你们带来了一场紧张而又激烈的塞车运动。看,它们已经来到了起跑线上,一号、二号、三号谁将会成为最后的冠军,请同学们大胆预测。
师:让我们把掌声献给冠军,送给一号车手。同学们预测的很好,那么一号的赛车为什么成为了最后的冠军呢?
生:因为一号的赛车,轮子是圆的。
师:其它的车手为什么会比一号的赛车慢呢?
生:因为它们的轮子是方形,是三角形,有棱有角的。
2、联系生活、举例说明
师:你在生活中,哪些物体上还有圆?指名学生回答日常生活中含有圆的物体。
师:圆在我们的生活中是无处不在的,汽车作为现代工业化的产物,正是因为装上了圆形的轮子,不仅极大的方便了我们的生活出行,也大大提高了社会生产效率;家庭用的圆形套装餐具,满足我们审美需求的同时,也更让我们味口大开,看来圆在我们的生活中的确很重要。下面就让我们对圆作更进一步的认识吧!
揭示课题:圆的认识
二、自主探索,初步体验:
1、第一次自主探索画一画。
师:你能创造出一个任意大小的圆吗?
生:能。
师:同学们真有自信,下面就请同学们前后四人小组为单位,可以利用学具袋中老师给大家准备的工具,也可以自己想办法去创造圆,比一比看哪个小组想到的方法最多?
学生进行小组合作,分工创造圆。
生:进行小组反馈。
教师注意将各种方法进行概括分类,学生可能会出现的答案有:
①利用硬币或其它圆形轮廓描圆;
②利用图钉和线画圆;
③用圆规画圆;
④用圆形物体用力在纸上压印圆;
⑤线一头系上重物旋转形成圆……
师:这么多的方法都能创造出圆,那么这些方法有什么缺点吗?
学生说一说各种画法的缺陷:(1、利用圆形轮廓描和印圆,方便但圆的大小固定。2、线画圆,比较麻烦但可以画很小的圆也可以画很大的圆。3、旋转形成圆不能留下痕迹。4、圆规画圆,方便且一定大小的圆都能画)
师:那你认为这么多方法中用什么画圆最科学最方便?
生:用圆规画圆最方便。
2、第二次尝试画一画—————用圆规画圆。
师:那请同学们用圆规自已尝试画一个圆。
没有画成功的同学把图案展示,我们愿意帮助你寻找原因。
生:(1、画移位的,2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?
学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,岔开圆规两脚的开口,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。(板书:定点、定长、旋转一周)
师:学生根据老师的讲解独立画圆。
师:大家画的圆的位置都一样吗?
生:不一样。
师:为什么会不一样?
生:因为刚针戳的位置不一样,(或点的位置不一样)
师:看来这个点能决定圆的位置,(板书:能决定圆的位置)
师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?
生:不一样。
师:为什么会不一样?
生:因为我们圆规的开口大小不一样。
生:圆规的`两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)
师:那请同学们把圆规两脚间的距离定为3厘米,来画一个圆,并用剪刀将你所画的圆剪下来。
三、认识圆各部分名称及探究其特征:
①学生跟老师一起操作:把圆对折、打开,换个方向,再对折,再打开…这样反复几次。(也可进行一下小竞赛,看谁折得快、折得好。)
提问:折过若干次后,你发现什么?(在圆内出现了许多折痕。)
师:仔细观察一下,这些折痕总在圆的什么地方相交?(圆中心一点)
教师指出:我们把圆中心的这一点叫做圆心。(贴出纸圆,点出圆心,并板书:圆心)
师:圆心一般用字母o来表示。(板书:o)
教师领学生读字母“o”,说明“o”的写法,让学生在自己的圆里标出圆心并用字母“o”来表示。
游戏过渡:下面让我们放松一下,玩一个“食指点圆”的游戏,游戏规则:教师说出圆的位置(圆外、圆心、圆内、圆上)让学生用食指来点,看谁点的快,点的准。尤其强调“圆上”的概念,指圆的边缘上。
②师:强调之后,让学生说圆上有多少个点?(无数个)现在请同学们用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?
通过测量引导学生发现:圆心到圆上任意一点的距离都相等。
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径。(教师在圆内画出一条半径,并板书:半径)
提问:谁能说一说什么样的线段叫做半径?
教师说明:半径一般用字母r来表示。(板书:r)
教师领学生读“r”,强调“r”的写法,让学生在自己圆里画出一条半径并用字母r来表示。
学生做完后,教师提问:在同一个圆里可以画出多少条半径?所有的半径长度都相等吗?
启发学生说出:在同一个圆里,有无数条半径,所有的半径长度都相等。(并板书)。
③同学们接着观察,刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(每条折痕都通过圆心,两端都在圆上。)
学生回答后,教师指出:我们把这样的线段叫做直径。(在圆内画出一条直径,并板书:直径)
提问:谁能说一说,什么样的线段叫做直径?
启发学生说出:通过圆心并且两段都在圆上的线段叫做直径。
教师说明:直径一般用字母“d”来表示。(板书:d)
教师领学生读“d”,强调"d"的写法,让学生在自己的圆里画出一条直径,并用字母“d”来表示。
学生做完后,教师提问:在同一个圆里可以画出多少条直径?自己用尺子量一量同一个圆里的的几条直径,看一看可以发现什么?
引导学生得出在同一个圆里有无数条直径,所有的直线的长度都相等。
④练习:出示课件请观察下图中哪些直径,哪些是半径。哪些不是,为什么?
⑤小结与过渡:通过刚才的学习我们知道,在同一个圆里,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。那么,在同一个圆里,直径与半径之间又有什么关系呢?(组织学生讨论)
引导学生得出:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。
师:如何用字母表示这种关系?学生回答后,教师板书:d=2rr=d/2。
师:这就是说,在同一个圆里,知道了半径的长度,乘以2就可以求出直径的长度;知道了直径的长度,乘以1/2就可以求出半径的长度。(组织学生说半径或直径的长度,让其他学生说直径或半径的长度,然后组内互说互评。)
⑥练习:出示课件填表。
⑦巩固练习:出示判断题。
四、转回课前问题:
为什么车轮做成圆形的能得冠军呢?
(让学生结合今天所学知识解决此题。)
五、课后作业:
用今天所学知识画出各种大小、不同颜色的圆,组合出一幅美丽的图画。
六、板书设计:
略
六年级上册数学教案篇8
教学目的:
1、使学生理解倒数的意义。掌握求一个数的倒数的方法。
2、渗透事物都是普遍联系观点的启蒙教育。
教学重点:理解倒数的意义和怎样求倒数。
教学难点:求倒数方法的叙述。
教学过程:
一、引新:
开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。
二、自学新课:
自学书本p19。并思考以下问题:
1、什么叫倒数?
2、怎么求一个数的倒数?
3、是不是任何数都有倒数?小数有吗?带分数有吗?
三、讨论辨析:
1、什么叫倒数?
2、看下面四道题,你能说一些什么有关“倒数”的话。
3、存在倒数有那些条件
(1)两个数。
(2)这两个数的乘积是1。
4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?
5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
6、总结求一个数的倒数的方法。
四、思考:
0.2的倒数是多少?
五、小结:
请学生说一说这节课学习了哪些内容。
六、作业:
练习五3—8。