变与不变教案6篇

时间:2024-01-02 16:37:18 分类:工作计划

教案的制定需要考虑学生的年龄、发展水平和学习风格,以确保教学的有效性,教案的适切性是一项重要的教育原则,它关系到教育的成败,下面是淘范文小编为您分享的变与不变教案6篇,感谢您的参阅。

变与不变教案6篇

变与不变教案篇1

本节教材是义务教育课程标准北师大版四年级数学上册第五单元“除法”中的的内容。编者意图是在学生学会三位数除以两位数的基础上,引导学生探索、构建“商不变的规律”这一知识模型,并能运用该规律进行除法的简便计算。本节教学重点是让学生在探索过程中发现规律。因此,教学时,要引导学生先计算,然后依次按照从上到下和从下到上的顺序去观察,比较算式中被除数和除数的变化及对应的商的关系,从而发现商不变的规律。对于规律的学习,重要的是能够用自己的语言进行比较清楚的描述,并能在具体的情境中加以应用,而不要求用统一的语言去描述并强记。

学情分析:

对于本节教材的学习,学生有了除数是两位数除法计算的知识基础,并且在本册的第三单元学生在学习乘法的结合律、乘法的分配律时,通过具体的情景活动,他们已经历“发现问题、举例验正、归纳规律、实践运用”的过程,这些学习方法的形成对学生发现“商不变的规律”将有较大的促进作用,因此,在学习“商不变的规律”时,完全可以把探索、发现的过程交给学生,让学生自己确定观察的方法,自己归纳观察结果。

教学目标:

1、经历自主探索、合作交流的过程,发现商不变的规律。

2、能运用商不变的规律,进行除法的简便计算。

3、培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

4、学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功的'快乐,培养学生爱数学的情感。

教学重点:理解并归纳出商不变的规律。

教学难点:会初步运用商不变的规律进行一些简便计算。教学方法:

1、根据学生的年龄特征,创设有效的问题情境,激发学学生参与探究的兴趣和欲望,调动学生的能动性。

2、引导学生自主观察、比较相关算式的内在联系,探究、发现、验证并运

用规律,引导学生在自主探索、合作交流的过程中主动构建数学知识模型,并运用建构的规律解决问题.

3、充分发挥老师的点拨作用,调动学生的能动性,引导他们去发现规律、分析规律、解决实际问题、获取知识,从而达到训练思维、培养能力的目的。教学准备:多媒体展台、课件等教学过程:

一、情境创设,激趣质疑:

猴王孙悟空指着收获的桃子对小猴说:“我把8个桃子平均分给2只猴子。小”猴听了直叫:“太少,太少。”猴王又说:“我把80个桃子平均分给20只猴子。”小猴听了还是嫌少。猴王又说:“我拿800个桃子平均分给200只猴子。”“大王,请您开开恩,再多给点行不行啊?”猴王一拍胸脯,显示出慷慨大度的样子说:“我拿8000个桃子平均分给20xx只猴子,这回行了吧?”这时小猴笑了,孙悟空也跟着笑了。

质疑:“为什么小猴和孙悟空都笑了?谁是聪明的一笑?”

二、分析问题,总结规律

1、发现规律

“谁是聪明的一笑?你有什么理由?”

学生说出理由及算式。教师在电子白板上板书算式:8÷2= 4 80 ÷20= 4 800 ÷200= 4 8000 ÷20xx= 4课件出示自学提纲,学生自主观察探究。

(1)从上往下观察:第二道算式中的被除数、除数和商与第一道算式相比有没有变化?有什么变化?第三道、第四道算式与第一道相比呢?

(2)从下往上观察:第三道算式中的被除数除、数和商与第四道算式相比有没有变化?有什么变化?第二道、第一道算式与第一道相比呢?

“比较几组算式后有什么发现?把你的重要发现和小组同学说一说?能用一句话概括你的重要发现吗?”

引导学生通过自主探究,合作交流,初步发现商不变的规律。教师及时板书:在除法里,被除数和除数同时乘或除以相同的数,商不变。

2、举例验证

质疑:这个规律是否具有普遍性呢?

“例如被除数和除数同时乘或除以0,2,5等数的情况,商变不变?”让学生举例验证,并在展台上展示。

通过举例验证学生明白了同时乘或除以相同的数,0要除外后,再完善概括出商不变规律:在除法里,被除数和除数同时乘或除以相同的数(0除外),商不变。

3、加深理解

“你认为在商不变规律中哪几个词最重要?”

让学生知道同时、相同、0除外、这几个词最重要。内化刚刚探索发现的商不变规律。

三、运用规律,解决问题

1、学以致用,培养学生的观察能力,能根据规律做题。 (1) 18÷6=3 (18 × 2) ÷(6 × 2)= (18 ÷ 3) ÷(6 ÷ 3)= (2) 72÷9=

36÷3=

720÷90=

360÷30= 7200÷900=

3600÷300=

2、用简便的竖式写法进行除法计算

“一些除法算式应用商不变规律计算比较简便。”课件展示:950÷50简便的竖式写法学生观察:“你们能说说这是怎么回事吗?”学生独立计算:480÷60

6300÷70让学生明白运用商不变规律进行被除数和除数末尾有0的除法计算比较简便。再次考察学生对规律的理解,让学生感受到学就有所用。

四、扩展应用

1、小故事《财主分银子》

(1)古时候,到了地主给长工们发工钱的时候,地主指着盘子里的银子对面前的长工们说:“这是你们的工钱,一共是170两银子,你们60个长工平均分,每人应得2两,还余下5两。就请大家喝杯茶吧! (2)质疑:听了这个故事后,你们有什么想说的吗?

学生观察思考,并和同组同学讨论交流。

通过讨论质疑学生知道被除数和除数同时乘或除以相同的数(0除外),商不变,但是余数会发生改变。

2、回顾前面《美猴王分桃子的故事》你们有什么启发吗?

让学生感受到事物不能只看表面现象,要通过现象看本质,及数学来源于生活的道理。

五、自主评价,促进反思。

今天你有什么收获?你认为今天学的知识可以应用到哪些生活实例当中?

教学反思

在小学阶段,商不变的规律是一个很重要的内容,给今后分数和比的性质打下了坚实的基础。但新教材却把商不变的规律及商的变化规律都放在一个例题中,大大增加了学习内容和理解难度,我将内容进行了分化,将商不变的规律单独作为一个完整的课时来讲,大胆创新,重点突出了商不变的规律,效果很好。上完本节课有几点收获:

1、由学生感兴趣的故事引入新课,能激发学生探究新知的欲望.2、在探究商不变的规律时,重视学生的自主探究、合作交流的培养,体现主导与主体间的关系.

3、探究规律并非一步到位,首先让学生探究发现被除数和除数同时乘以相同的数,商不变。然后,再让学生发现被除数和除数同时除以相同的数,商也不变,最后举例验证发现同时乘以或除以相同的数,0要除外,再完善总结出商不变的规律。

然而也有不足之处:首先,在讲解完规律过渡到应用时,衔接不够自然;规律应用过程中,讲解简便运算后,总结不到位:由于在讲解练习题时,把握不熟练:在发动学生回答问题上不到位,以至于课堂气氛不够活跃,学生明明会的问题不敢回答,需要老师再三提示。在以后的教学工作中,我要扬长避短,精益求精,争取做到更好!

变与不变教案篇2

【教学目标】

1、 使学生结合具体情境,通过合作探究学习,经历观察、比较和探讨的数学研究过程,在已有知识基础上放手探讨商不变的规律。

2、 通过本节课的教学,使学生理解掌握商的变化性质,会用商的变化性质对口算除法进行简便运算。

3、 使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣,培养学生善于观察、勤于思考、勇于探索的习惯。渗透符号化、转化、模型、“变与不变”的函数等思想和科学的研究态度。

【教学重难点】

引导学生通过观察、比较、探讨发现并总结商的变化规律,获得探索规律的经验和方法。

【教学流程】

(一)创设情境,渗透规律。

?设计意图:激发兴趣,引出故事中蕴含的算式,通过童话故事初步的直观感受到商不变的规律。】

1、故事《猴子分桃》花果山风景秀丽气候宜人,那儿住着一群猴子,猴王今天要给小猴子分桃子。猴王说:我给你6个桃子,你们3只小猴去分吧,小猴一算就说:这也太少了吧,能不能多分点?猴王说:可以,那给你60个桃子,你去分给30只小猴,怎么样?小猴挠挠头说:大王,能不能再多给点?大王一拍桌子显出慷慨大方的样子说:那好吧,给你600个桃子,你分给300个小猴,你总该满意了吧?

小猴笑了,猴王也笑了,谁的笑是聪明的一笑,为什么?

2、根据故事情境列出算式

(二)自主探究,发现规律。

1、初步观察,引出课题

师:无论怎么分,每个小猴得到几个桃?2在算式里是什么?商一直都没变谁一直在变呢?被除数和除数一直都在变商却一直不变,这是为什么呢?这里面隐藏着什么秘密呢?今天就让我们来一场探秘之旅共同寻找“商不变的规律”。(板书课题)

2、补充素材,渗透函数

?设计意图:为学生建立商不变规律的模型提供素材,并通过观察图渗透函数思想,感受两种变化量的正比例关系。】

(1)师:要想研究出一个规律,仅靠一组算式不充分不科学,老师给你们提供一幅图你们观察下图中讲了件什么事?(出示图片)

(2)观察图片你有什么发现?(引导学生感受到随着支数越来越多需要的钱数也越来越多)(3)列式感受商不变:不管怎么变,什么一直没变?你能列出算式吗?

3、比较算式,深入观察

?设计意图:分组自主选择研究素材观察节约教学时间,把时间用在全班交流上,通过交流发现大量不同的研究素材呈现出共同的规律,在探讨比较去除无关因素后建立商不变规律的模型。】

(1)任选一组算式观察:

第一组: 第二组:

6 ÷ 3 = 2 10 ÷ 2 = 5

60 ÷ 30 = 2 20 ÷ 4 = 5

600 ÷ 300 = 2 30 ÷ 6 = 5

40 ÷ 8 = 5

①从上往下观察,被除数怎样变化?同时除数怎样变化?商呢?

再从下往上看一看或在同一组算式中任选两道观察比较。

②把你的发现和同伴交流一下。

(2)全班交流,互相补充发??

4、归纳商不变的规律

(1)根据发现到的规律写一组符合这样规律的算式。

(2)总结归纳规律,教师板书:被除数和除数都乘或除以一个相同的数(0除外),商不变。

(四)巩固练习,深化理解

1.口算应用,加深理解

根据每组题中第1题的商,写出下面两题的商。

72÷9= 36÷3= 80÷4=

720÷90= 360÷30= 800÷40=

7200÷900= 3600÷300= 8000÷400=

2.简便计算,灵活运用

(1)出示:900÷25让学生快速口答。

(2)播放微课进行学法指导

?设计意图:通过学生借助微课自学,运用商不变规律进行简便计算。学会观察算式数据自身特点灵活用规律解决问题的基本方法。】

(3)简便计算

(五)回顾反思,建构模型。

师:同学们,我们一起来回顾一下今天的探究过程。我们是怎么发现这个规律的?首先我们从故事开始,引发我们的思考。然后我们观察算式,发现规律。然后我们举些例子,验证规律。最后我们归纳概括,总结规律。

师:请同学们看大屏幕上的这两组算式,他们之间也存在着变化规律,课下请同学们用学到的这个方法探究他们的规律,好吗?

师:同学们,我们在前面学习了积的变化规律,今天又学习了商不变的规律,你还有什么新的猜想吗?(学生大胆猜想)既然是猜想,就免不了会有错误。但是猜想的过程,就是追求真理的过程。同学们在学习过程中,要敢于猜想,善于猜想,这样才能有所发现,有所创造!下课!

【板书设计】

商不变的规律

6 ÷ 3 = 2 10 ÷ 2 = 5

60 ÷ 30 = 2 20 ÷ 4 = 5

600 ÷ 300 = 2 30 ÷ 6 = 5

40 ÷ 8 = 5

被除数和除数都乘或除以一个相同的数(0除外),商不变。

【教学反思】

在小学阶段,商不变的规律是一个很重要的内容,给今后分数和比的性质打下了坚实的基础。但新教材却把商不变的规律及商的变化规律都放在一个例题中,大大增加了学习内容和理解难度,我将内容进行了分化,将商不变的规律单独作为一个完整的课时来讲,大胆创新,重点突出了商不变的规律,通过交流发现大量不同的研究素材呈现出共同的规律,在探讨比较去除无关因素后建立商不变规律的模型。

上完本节课有几点收获:

1、由学生感兴趣的故事引入新课,能激发学生探究新知的欲望,引出故事中蕴含的算式,通过童话故事初步的直观感受到商不变的规律。

2、通过具体情境设计提供研究素材,让学生感受商不变的规律,通过观察比较分析探索商不变的规律并建立该数学模型,进程中合理渗透函数思想,培养学生提升观察、比较归纳的能力。出示了关于数量和总价的关系图,让学生通过观察图渗透函数思想,感受两种变化量的正比例关系,并以此图中单价不变的规律为学生研究商不变规律丰富了研究素材,体会探究一个数学规律的严谨科学的精神。

3、在探究商不变的规律时,重视学生的自主探究、合作交流的培养,体现主导与主体间的关系,让学生分组自主选择研究素材观察节约教学时间,把时间用在全班交流上,通过交流发现大量不同的研究素材呈现出共同的规律,揭示规律并非一步到位,而是分解揭示,首先让学生发现被除数和除数同时扩大相同的倍数,商不变,然后,再让学生发现被除数和除数同时缩小相同的数,商不变,最后引导学生发现的规律是不是适用于任何数,解决0除外的问题,在探讨比较去除无关因素后最终建立商不变规律的模型。

4、播放微课进行学法指导,通过学生借助微课自学,运用商不变规律进行简便计算。学会观察算式数据自身特点灵活用规律解决问题的基本方法。

不足之处:

1.0除外的问题解决比较片面,不仅因为 0不能当做除数,还因为0乘任何数都得0,所以0才要除外的;

2.练习题ppt中答案有错,课前检查不到位。在发动学生回答问题上不到位,以至于课堂气氛不够活跃,学生明明会的问题不敢回答,需要老师再三提示。在以后的教学工作中,我要扬长避短,精益求精,争取做到更好!

以上内容就是差异网为您提供的8篇《《商不变的规律》教学教案设计》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。

变与不变教案篇3

一、说教材

?商》是九年义务教育小学数学第七册中的内容,这是一节新授课。“商不变的规律”是一个新的数学规律,被除数和除数必须同时扩大(或缩小)相同的倍数,商才能不变,这是一种函数思想,学生以前没有接触过。这个规律不但是被除数,除数末尾有零的除法的简便运算的根据,也是以后学习小学除法的依据,也有助于分数的基本性质的理解,学生在学习课本之前已经掌握除数是三位数的除法法则,为本课题的学习提供了知识铺垫和思想孕伏。

通过本节课的教学,要求学生理解、掌握商不变性质,会用商不变性质,对口算除法进行简便运算。学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,同时渗透初步的辨证唯物主义思想启蒙教育。根据前述的教学内容和教学目标确定本节课的教学重点是引导学生发现并掌握商不变的性质,其中对商不变性质的理解是本课的难点。

二、说教学思想

西师版小学数学四年级下册说课稿《商不变的规律》:根据学生的年龄特征,创设有效的问题情境,引导学生自主观察、比较相关算式的内在联系,探究、发现、验证并运用规律,既让学生掌握了商不变性质,又让学生积极、主动地参与到知识的形成过程中去,培养学生的学习能力。

三、说教学流程

第一环节:激趣设疑,提出问题

在这一环节中,我安排了两个步骤,分别是激趣设疑和提出问题,我用“狐狸兄弟烧饼广告”展开:小白兔最爱吃烧饼了,这一天,它来到森林里的“小狐烧饼公司”,想买到好吃又便宜的烧饼。但狐狸兄弟们的广告,把它难住了,不知该买哪一家的吃。狐狸大兄弟的广告:“240元可以买40个!”狐狸二兄弟的广告:“480元可以买80个!”狐狸三兄弟的广告:“4800元可以批发800个!”狐狸四兄弟的'广告:“60元可买10个!”狐狸五兄弟的广告:“24元可以买4个烧饼!”通过这五道算式的计算,学生发现烧饼的单价都是6元。这时狐狸六兄弟又贴出了广告:“烧饼每个:(24÷13)÷(4÷13)=( )元”,用“算式设疑”引发学生认知上的冲突,使学生欲罢不能,在学习行为中遇到障碍时,让学生观察之前的5个算式,引导提出“被除数和除数是怎样变化的?”“商在什么情况下会不变?”等数学问题,明确学习目标,起到目标定向的作用。

第二环节:分析问题,总结规律

在这一环节中,我安排了三个步骤,先让学生自主发现规律,然后验证规律,最后是深化理解规律。

首先引导学生观察故事情境中的前5个算式,以“240÷40=6”为标准,观察其余算式中的被除数与除数的“变”,并将他们板书:

240÷40=6

480÷80=(240×2)÷(40×2)=6

4800÷800=(240×20)÷(40×20)=6

60÷10=(240÷4)÷(40÷4)=6

24÷4=(240÷10)÷(40÷10)=6

变不变

接着让学生分组讨论,单组同学探究被除数和除数同时扩大相同倍数的情况,双组同学研究被除数和除数同时缩小相同倍数的情况,再由集体概括出“商不变性质”,同时强调“同时”、“0除外”来完善概念。当然,根据不完全归纳提出的猜想不完全可靠,而对小学生来将,对提出的假设也只能另举例子来检验。于是,我通过让学生写例子验证,以培养学生的科学思想方法。最后我针对学生易错、易漏之处让学生通过“判一判”、“填一填”等即时练习深入理解规律。

判一判

350÷50=(350÷10)÷(50÷10)

75÷25=(75×4)÷(25×4)

360÷90=(360+10)÷(90+10)

91÷13=(91×2)÷(13×3)

填一填

200÷40=(200×4)÷(400× )

=(200○ )÷(40÷5)

=(200×7) ÷( ○ )

= ÷50

=20÷

第三环节:运用规律,解决问题

在这一环节主要是运用“商不变性质”来解决“3600÷600=”等被除数、除数末尾同时有0的除法,让学生所有学用,在口算是寻找方法,提高口算速度。

第四环节:巩固练习,扩展应用

共三道练习,第一道是口算,让学生用今天学过的知识进行简算,其中象“7500÷50=”等学生易错的题目,通过学生提醒学生的方式,提醒学生在简算时,被除数和除数末尾要去掉相同个数的0。

第二道练习是解决课刚开始时狐老六提出的问题:烧饼每个:(24÷13)÷(4÷13)=( )元。

第三道练习属于开放性练习:240÷40=(200○ )÷(40○ )拓展学生思维空间,从不同角度、不同类型、不同形式分析问题,解决问题,发展学生创新思维。

第五环节:归纳总结,完善认知

通过询问“你有什么收获?”“这些收获主要通过什么方式获得?”进一步系统完善认知。

第六环节:拓展延伸,孕伏新知

变与不变教案篇4

教学目标:

知识技能:理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

情感态度:学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。

教学重点:

使学生理解并归纳出商不变的规律。

教学难点:

使学生会初步运用商不变的规律进行一些简便计算。

预设过程:

一、创设情景,感悟变与不变

(课件投影,创设情景)

电脑演示孙悟空大闹海龙宫夺金箍棒的情节,从金箍棒的变化帮助学生理解“变与不变”、“扩大”、“缩小”的概念,作好铺垫。提出揭示课题,今天就研究相关问题。

二、 探究规律

1. 创新情境,提出问题

孙悟空大闹天宫,如来佛祖要收服他,让他在手掌上翻筋斗逃跑。

(1)孙先跨出一步1米,如来的手掌长1米,请问如来手掌长是孙步长的几倍?(让学生说出算式:1÷1=1,师板书)

(2)孙生气了,跨出一大步5米,谁知如来的手掌长长5米,请问这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:5÷5=1,师板书)

(3)孙更生气了,跨出了更一大步10米,小朋友猜,如来的手掌长会长长几米,(10米),小朋友真聪明,猜对了,请问这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:10÷10=1,师板书)

(4)孙更气到脸都紫了,小跺了一小步1/2米,小朋友不用猜,肯定知道如来的手掌长也长了1/2米,谁能说说这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:1/2÷1/2=1,师板书在1÷1=1上面)

(5)孙气疯了,打了一个筋斗云,小朋友知道是多少吗,(108000里),如来的手掌长也疯长,也长到同样长的108000里,请问这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:108000÷108000=1,师板书)

指算式提问:请同学们观察这组算式,你能发现什么?

2、探索与发现:

(让学生以个人观察算式分析思考后,小组、全班交流活动形式组织学生探索和发现商不变规律。)

1、引导学生先独立思考,再小组交流,最后全班交流。

学生可能会汇报:

a、在同一个算式中的被除数和除数都相同,商都是1。(师表扬这位同学观察很仔细,肯定学生回答后,指着算式中所有得数回应:从算式中我们看出,确实这几个除法算式中,商是相等的。还有哪位同学结合算式说得具体一些?)

b、这几道都是用除法计算的,被除数和除数虽然不同,但商是相同的。(师表扬这位同学分析很到位,数理很清楚,肯定学生回答后,再次指着算式回应:从算式中我们看出,商是相等的,被除数和除数确实不同。现在请同学们再联系算式,看看它们之间有关系吗,你还能再发现什么?大家先独立思考1分钟,再小组交流。)

2、引导小结:谁能用一句完整的话概括一下我们刚才发现的规律,汇报小结后板书:被除数和除数同时乘相同的数,商不变。

3、质疑:被除数和除数同时乘0,商还不变吗?引导强调零除外。

4、试一试,验证规律。

刚才看的神话故事,现实生活中这样的例子有吗?

(1)师拿了一瓶矿泉水,说:老师去买了2瓶矿泉水,付给售货员4元,请帮老师算算一瓶多少钱?指名生板书:4÷2=2

(2)同学算得真好,售货员确实告诉我每瓶2元,写算式2÷1=2

(3)假如我现在还想再10瓶,谁愿意来算算要多少钱?写算式20÷10=2

(4)如果老师有100元,谁能很快地算出能买多少瓶?写算式100÷(50)=2,为什么?

指着4个算式让学生讨论验证商不变规律

5、引导学生归纳:被除数和除数同时除以相同的数(零除外),商不变。

6、让学生给我们的发现的规律起个名字。揭示课题:商不变规律。

三、应用规律。

1、让学生提出问题:(指着课题)看到这规律你想了解什么?

鼓励学生大胆思考,积极发言,最后集中解决规律应用方面的问题。

2、谁愿意举例说说你发现商不变规律在哪些地方很好用。(让学生先说,不够老师结合例子补充)

(1)除法的简便计算。如950÷50可变成95÷5来计算,注意强调要整除的情况下使用才方便。

练习:p75第1、2小题、观察与思考。

(2)生活运用,物品的合理估算。

练习:p75第3小题。

(3)除法的小数计算和比例的应用等,在此暂不作介绍,以后五、六年级将会学习到,如果有兴趣的同学可自己找资料学习。

四、深化、拓展。(游戏:救孙悟空)

孙犯错了,最终被如来压在五指山下,但是如来说,我们小朋友要是能动脑筋,过四关,答对四组问题就可救了孙来,小朋友你敢迎接挑战吗?

第一关:运用规律,解决问题。

4500÷500= 4800÷400=

要求学生口算,并说说是怎么想的?调动学生已有的经验,并引导学生用商不变的规律解释以前的算法。

第二关:从上到下,先算出每组题中第一题的商,然后很快地写出下面两题的商。让学生独立做在书上,集体订正。

72÷9= 36÷3=80÷4=

720÷90= 360÷30= 800÷40=

7200÷900=3600÷300=8000÷400=

第三关:我当小裁判。(投影出示题目)

(1)让学生判断“下面的计算对吗?”

小结:在计算被除数和除数末尾有0的除法,商不变的规律能让我们的计算变得既简单又快捷,但在计算时要注意被除数和除数要同时缩小相同的倍数。

(2)(14×2)÷(2÷2)=7( ),(14×5)÷(2×3)=7( )

第四关:填空:在□中填数,在○中填运算符号:

200÷40=5

(200×4)÷(40×□)=5(200÷2)÷(40÷□)=5

(200×3)÷(40○□)=5(200÷4)÷(40○□)=5

(200×□)÷(40○□)=5

师:□里可以填“0”吗?为什么?

四、课堂总结:谁能用一句话说说这节课你的感受或收获。(思考半分钟后作答)

五、布置课外作业:(三题中选做其中一份)

1、举例说说商不变规律。

2、说说你发现生活中的商不变规律在哪应用了,如何用,好处在哪里?

3、写一篇关于你探索商不变规律的数学日记。

变与不变教案篇5

一、教学内容:

冀教2011课标版小学四年级数学上册第20—21页商不变的规律。

二、教学目标

1、经历探索的过程,发现商不变的规律。

2、能运用商不变的规律,进行一些除法运算的简便计算。

3、在探索规律的过程中,经历观察、比较、综合、归纳等思维活动,获得一些探索的经验,发展思维能力。

4、进一步感受数学在实际生活中的应用。

三、教学重点

让学生在探索过程中发现规律。

四、教学难点

理解商不变的规律以及在实际中的应用。

五、教学准备:课件

六、教学过程

(一)创设《和尚分面包》的故事情境,引入新课

1、从这个故事中你发现了哪些数学信息?根据这些信息,你能提出什么数学问题?

2、大家猜一猜,三种分法,每天吃到的面包数一样吗?

3、你会用算式表示出小和尚们平均每天能吃到几个面包吗?

(二)探索规律

1.板书学生的算式

8÷2=4(个)

16÷4=4(个)

32÷8=4(个)

师:通过计算,我们发现三次分面包看起来分的面包数越来越多,分的天数也越来越多,其实平均每天能吃到的面包数是一样的。老和尚是运用了什么知识帮助教育了肥肥小和尚的,现在就让我们来探究这个问题。

2.小组合作探究,发现规律。

活动要求:

从上往下仔细观察这组算式的被除数、除数、商,说一说它们是怎样变化的?

(2)结合算式用准确的语言表述这一规律。

(3) 举例验证商不变的规律。

3.小组汇报学习成果。

4.归纳小结。

师:谁能将你的发现用自己的语言试着说一说。

生:在除法里,被除数和除数同时乘相同的数,商不变。

生:在除法里,被除数和除数同时乘相同的数(0除外),商不变。(幻灯片出示规律)

师:你能给同学们说说这里为什么0要除外?

生:因为0不能作除数。

5、 同桌讨论,发现规律。

师:从下往上观察,相信同学们会有新的发现?

生:汇报学习成果。

师:你能像前面的发现一样,用你的语言表述一下你的发现吗?

生:在除法里,被除数和除数同时除以相同的数(0除外),商不变。(幻灯片出示规律)

6、总结规律。

师:谁能把两次的发现合并在一起,用规范的语言表述出来。

生:在除法里,被除数和除数同时乘(或除以)相同的数(0除外),商不变。(板书规律)

师:板书课题《商不变的规律》(学生齐读课题一遍)。

师:你认为商不变的规律中,哪些词语比较重要?(同时、相同、0除外)学生齐读商不变的规律。

7、举例验证(再次小组合作完成)。

师:你还能举出像这样的例子说明你的发现吗?

8、让学生看书并齐读P20页商不变规律。

9、前后照应(故事中的疑问得到解决)。

(三)巩固规律

1.试一试: 650 ÷ 40

(1)让学生运用商不变的规律试着笔算650÷ 40(把被除数和除数同时除以10)。

(2)余数是1还是10?

2、学以致用。

下面的计算对吗,说一说你判断的理由。

740÷60=

小结:利用商不变规律能使除法运算更简便。

(四)尝试运用规律

同学们,接下来我们利用所学的规律进行创关练习吧!

第一关:填空我在行

(1)在一道除法算式里,如果被除数除以5,除数也除以5,商( )。

(2)在一道除法算式里,如果被除数乘10,要使商不变,除数( )。

(3)在除法里,被除数和除数同时乘或除以( )的数(0除外),( )。

第二关: 判断我神速(正确的拖进正确的蘑菇屋里,错误的拖进错误的蘑菇屋里)

(1)甲乙两数的商是7,如果甲乙两数都乘100,商是700。

(2)被除数乘3,除数也乘3,商不变。

(3)48÷12=(48÷2)÷(12÷2)

(4)80÷20=(80+2)÷(20+2)

第三关: 规律运用我能行(帮小兔过河)

48÷4=

240÷20=

480÷40=

4800÷400=

第四关: 解决问题我最棒

聪聪和红红从同一天开始分别看两本故事书。聪聪看的故事书有70页,红红看的故事书有140页。聪聪每天看14页,5天看完。红红每天了28页。不计算,你能说出红红几天能看完吗?

引导学生独立思考,指名回答,并说出理由。

(五)总结、作业

1、通过这节课的学习,你有什么收获?

2、作业:课本21页练一练第1、3题。

变与不变教案篇6

〖教材分析〗

这个教材内容是在学生经历了“有趣的算式”、“乘法的结合律”、“乘法的分配律”三个探索与发现的学习过程后,教材再次以“探索与发现”为主题,其宗旨是让学生经历观察、对比被除数与除数的变化及对应的商的关系,从而发现“商不变的规律”的学习过程,感受探索与发现的成功与快乐,进一步掌握探索与发现的方法;并使学生在深刻理解了“商不变的规律”的内涵的基础上,引导学生运用知识解决计算中和实际中的问题。

〖教学目标〗

知识技能:理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

情感态度:学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。

〖教学重点〗

使学生理解并归纳出商不变的规律。

〖教学难点〗

使学生会初步运用商不变的规律进行一些简便计算。

〖教学过程〗

一、创设情境,激发兴趣。

师:同学们,喜欢听故事吗?今天柯老师给你们讲一个故事。(课件演示故事内容)

猴子分桃

花果山风景秀丽,气候宜人,那儿住着一群猴子。有一天,猴王让小猴分桃子。猴王说:“给你8个桃子,平均分给2只小猴子。”小猴子一听,连连摇头,“不行,太少了!太少了!”“那就给你80个桃子,平均分给20只猴子。”小猴子喊道:“还少,还少。”“还少呀?那就给你800个桃子,平均分给200只猴子吧。” 小猴子得寸进尺,试探地说:“大王开恩,再多给点行不行呀?”猴王一拍桌子,显 出慷慨的样子:“那好吧,给你8000个桃子平均分给2000只小猴子,这下你该满 意了吧。”小猴子笑了,猴王也笑了。

师:为什么小猴子笑了,猴王也笑了?

生1:因为猴子吃到了了更多的桃子了。

生2:因为无论怎样分,每个猴子吃到的个数都一样,都是4个。

师:是这样的吗?你是怎么知道的呢?

生:8÷2=4 80÷20=4 800÷200=4 8000÷2000=4

师:哦,原来是这样,你真聪明!为什么每只猴子每次分到的桃子都一样呢?这节课我们就一起来研究这个问题。

二、探索规律,概括性质。

(一)观察算式,发现规律。

(1)课件出示:

8÷2=4 80÷20=4 800÷200=4 8000÷2000=4

(2)观察讨论:

a、从上往下看,被除数和除数有什么变化?商有什么变化?

(学生观察讨论后,代表汇报结论,师板书:被除数和除数都乘一个数,商不变。)

b、从下往上看,被除数和除数有什么变化?商有什么变化?

(学生观察思考,个别汇报结论,师板书:被除数和除数都除以一个数,商不变。)

c、你能举些例子说明你的发现吗?

(学生举例,各抒己见)

d、要使商不变,被除数和除数都乘0或除以0,可以吗?为什么?

( 生小组讨论,再代表汇报,举例说明)

师:真棒,能把把你的发现用一句话说给大家听听吗?

(学生尝试归纳发现的规律,师板书规律)

(二)教师小结,揭示课题。(板书课题)

三、反馈练习,深化认识。

(1)完成p74的试一试。

(2)填数。

20÷5=4

( 20 ×6 )÷( 5 × )=4

( 20 ÷ )÷( 5 ÷5 )=4

( 20 × )÷( 5×8 )=4

(3)在下面等式中的○里填上运算符号,在□里填上适当的数。

16÷8=2

(16÷ )÷(8○2)=2

(16○3)÷(8× )=2

(16÷ )÷(8÷ )=2

3、已知48÷12=4,判断下列各式是否正确。如果不对,怎样改一下就对了。

⑴(48×5)÷(12×5) =4 ( )

⑵(48×3)÷(12×4) =4 ( )

⑶(48÷6)÷(12×6) =4 ( )

⑷(48÷4)÷(12÷4) =4 ( )

4、抢答。

⑴在一道除法算式里,如果被除数除以5,除数也除以5,商( )。

⑵在一道除法算式里,如果被除数乘10,要使商不变,除数( )。

⑶在一道除法算式里,如果除数除以100,要使商不变,被除数( )。

四、课堂总结。

谁能用一句话说说这节课你的感受或收获。(思考半分钟后作答)

五、作业布置。

1、从上到下,先算出每组题中第一题的商,然后很快地写出下面两题的商。

72÷9= 36÷3= 80÷4=

720÷90= 360÷30= 800÷40=

7200÷900= 3600÷300= 8000÷400=

2、填空(在□中填数,在○中填运算符号)

200÷40=5

(200×4)÷(40×□)=5 (200÷2)÷(40÷□)=5

(200×3)÷(40○□)=5 (200÷4)÷(40○□)=5

(200×□)÷(40○□)=5

《变与不变教案6篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭