三角形内角和教案8篇
在编写教案时,我们要关注培养学生的实际操作能力,教案应该包括教学目标和预期成果,淘范文小编今天就为您带来了三角形内角和教案8篇,相信一定会对你有所帮助。
三角形内角和教案篇1
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动,发现并证实三角形的内角和是180°,应用三角形内角和的知识解决实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识,探索精神和实践能力。
重点、难点:
经历“三角形内角和是180°”这一知识的形成,发展和应用的全过程。
三角形内角和是180°的探索和验证。
教学过程:
一、揭示课题
1、今天我们一起来学习三角形的内角和,那什么是三角形的内角和?(三角形里面的角),它有几个内角?(三个)出示纸片,那什么又是三角形的内角和呢?(把三角形的三个角的度数加起来就是三角形的内角和)
出示课件
2、提出问题,为后面做铺垫。
现在有3个三角形(出示课件),直角三角形说:“我是直角三角形,我的内角和最大”钝角三角形说:“我有一个钝角,比你们三个角都大,所以我的内角和才是最大的。锐角三角形说:“我虽然是锐角三角形,但我的个头最大,所以我的内角和才是最大的。
孩子们,它们这样吵起来可不是办法呀!你们可知道它们谁的内角和最大呢?那我们就一起来证明给他们看。
二、新授
1、任意画不同的类型的三角形,算一算三个内角和是多少度。我们就画三个不同类型的三角形,算一算三个内角和是多少度,我们有三大组,为了节约时间,每一大组画一种又分几小组,三人一小组,一人画,一人量,一人记录。(小组合作,画图,量角,记录,计算)
指名汇报结果并板书(至少一种一个板书),有不同意见的举手,相差1、2度很正常,量角会有误差(你们完成的又快又好,因此可见小组合作很到位)
师出示一个大直角三角板,请大家算一算这个三角板的内角和是多少?
(三角形的内角和都是一样大的,都是180°,仅仅一个实验还不能让它们心服口服,下面我们再来做两个实验,让它们心服口服)
1、拼一拼,折一折
孩子们,我们又活动起来吧,拼一拼折一折,让它们看一看,拿出你们准备好的三角形。我们一起来:拿出一个三角形(不管形状),撕下三个角,然后拼在一起(注意三个角的顶点要在同一个点上)你们发现了什么?(拼成了一个平角,这一点就是平角的顶点)
我们再拿出一个三角形,折一折(注意科学的严谨性,折的时候不留很宽的缝隙)你又发现了什么?(这个三角形还是组成了一个平角)
通过这三次实验,我们可以得出结论:三角形的内角和等于180°,不分形状,不分大小,任何一个三角形的内角和都是180°
此时,这三个三角形还争吵吗?它们都心服口服了。
孩子们,你们真了不起,轻而易举就平息了一场争吵。现在你能不能利用所学知识解决一些问题呢?
三、练习
1、抢答游戏(答对的.给你的那一小组加一分)
①
这个三角形的内角和是多少度。
②
把这个三角形平均分成两个小三角形,每个小三角形是多少度。
③
这个小三角形再分成一大一小两个三角形,这个三角形的内角和分别是多少度?
④
三个小三角形拼成一个更大的三角形,它的内角和是多少度?
2、智慧角
3、判断(用手语表示)(哪个小组同学全部举手,就由哪个小组回答,口说手划答对加一分)
4、知识扩展
其实三角形的内角和是一个小朋友发现并提出来的,当时他只有12岁,比你们大一点点,真了不起,你们想知道他是谁吗?(帕斯卡)
出示课件
孩子们,其实你们跟他们同样聪明,以后,我们就利用所学知识去发现探索新的知识和规律,只要努力,就一定会成功的,孩子们加油吧!
四、总结
任何一个三角形不分大小,不分形状,它们的内角和都是180°
三角形内角和教案篇2
教学内容
人教版小学数学第八册第五单元第85页。
任务分析
教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。
学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。
教学目标
1、通过实验、操作、推理归纳出三角形内角和是180°。
2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。
3、通过拼摆,感受数学的转化思想。
教学重点
探究发现和验证“三角形的内角和180度”。
教学难点
验证三角形的内角和是180度。
教学准备
多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。
教学过程
一、复习旧知,学习铺垫
1、一个平角是多少度?等于几个直角?
2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解规律
1、说明三角形的三个内角和:
说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?
师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的.内角和。
板书课题:“三角形的内角和”。
揭示课题:今天我们一起来探究三角形的内角和有什么规律。
2、探究三角形的内角和规律
探究1:量一量,算一算
以小组为单位,用量角器计算出三种三角形的内角和各是多少度?
生讨论汇报,并引导学生发现:三角形的内角和接近180°。
师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?
学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?
探究2:摆一摆,拼一拼
引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?
生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做
如图:
(1)
锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°。
(2)
让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°。
(3)
让学生独立用同样的方法,发现:钝角三角形的内角和也是180°。
引导学生归纳:三角形的内角和是180°。
是不是所有的三角形的内角和都是180°呢?
三角形内角和教案篇3
教学目标
知识与能力:学生通过测量、撕拼的方法探索和发现三角形三个内角和是180°。
过程与方法:学生经历合理猜想和验证三角形内角度数和等于180°的过程,发展空间观念及分析推理能力。
情感态度和价值观:学生在活动中体验成功的喜悦,激发学生探索数学的愿望和兴趣。
重点难点
教学重点:
探究发现三角形的内角和是180度。
教学难点:
在猜想和验证三角形内角和的过程中发展空间观念。
教学过程
活动1【导入】理解内角、内角和概念
1、谜语引入:形状似座山,稳定性能坚,三竿首尾连,学问不简单,打一几何图形猜一猜是什么?
q:结合谜面的信息来说一说三角形有什么特点?
2、介绍内角:这三个角都在三角形的里面,又叫内角。
q:三角形有几个内角?
3、介绍内角和:把三个内角的度数加起来求和就是三角形的内角和。
引出课题:今天我们就来研究三角形内角和。
活动2【活动】观察图形
1、观察图形的变与不变
ppt依次出示
q:这是锐角三角形,什么是它的内角和?
出示直角三角形,它的内角和是指?
出示钝角三角形,内角和是指?
质疑:哪个三角形的内角和最大?
预设1:钝角三角形内角和大。(说想法)
预设2:一样大。(说想法)
预设3:180度。
小结:三个三角形的样子不一样,大小也不一样,三个内角也不一样,但内角和是一样的。
(二)活动二:猜想内角和不变的度数
q:这个一样的度数是多少?你是怎么知道的?
预设1:听说过,学过。
预设2:直角三角尺上三个角的度数和是180度。
预设3:等边三角形。
这两个都是我们知道度数的特殊的三角形,请你根据这个特殊的三角形来大胆的猜猜三角形内角和是多少度?那任意的`一个三角形的内角和度数是不是180°呢?今天我们就来一起研究。
活动3【活动】测量验证
(一)思考量的方法和原因
过渡:你想怎么研究?(用量角器去量)
q:谁来介绍介绍量的方法?
预设:要想研究内角和,只要把三个内角度数量出来再加起来看看是不是180度就可以了。
(二)动手测量
ppt:操作建议:
1、请你找到三角形的三个内角,用彩笔标序号1、2、3。
2、用量角器仔细测量后,记录角的度数。
3、列式计算出三角形内角和度数。
动手测量
(三)汇报交流:
学生1展示测量的过程。
q:还有谁测量的这个锐角三角形,说一说?
追问:为什么同一个三角形内角和度数却不一样?
q:你在测量的过程中遇到了什么困难?
q:观察这些数据,虽然都不太一样,但是都很接近?
小结:测量确实可以帮助我们找到三个角的度数,加起来就可以求出内角和,但是测量有误差。
活动4【活动】拼角验证
(一)思考其它验证方法
q:你还有其他的方法吗?
预设1:学生没有反应。
师引导:说到180度,你想到什么角?(平角)
预设2:撕拼法
q:怎么把三个内角拼在一起?
(生不撕,教师帮助突破,撕下三个内角。)
q:你能在投影上拼一拼吗?
预设3:折叠法
你的方法也很好,你们听懂了吗?一会儿可以试试。
预设4:描画法
q:怎么描?你能演示一下吗?
其他同学观察他在做什么?
引语:刚才说的方法都很好,下面我们自己来试一试。
(二)动手拼一拼
操作要求:
1、请你用彩笔在纸上随意画一个三角形,并剪下来。
2、用彩笔标出三个内角。
3、尝试操作。
动手操作
(三)汇报交流
q:你是怎么研究的?发现了什么?
(四)小结
刚才每人的三角形是自己任意画出的,形状、大小都不一样。无论是撕拼、折叠、还是描画的方法,都是在把这三个内角拼在了一起,转化成一个平角,我们发现他们的内角和都是180度。
活动5【活动】几何画板验证
引:但我们时间有限,研究的三角形个数有限,是不是任意一个三角形的内角和都是180度呢?我们可以借助几何画板来看一看。
师:介绍:计算机能够帮助我们比较精确地测量出三个角的度数,并计算它们的和。
观察:老师拉动一个顶点,什么变了?什么没变?
小结:也就是,无论我们怎么改变三角形的形状,大小,虽然它的内角在变化,但三个内角和的却是不变的,都是180度。
活动6【练习】基础练习
1、三角形中∠1=55°,∠2=45°,∠3=?
2、直角三角形:我有一个锐角是40°,求另一个角?
3、说一说:在一个三角形中,能有两个直角吗?能有两个钝角吗?为什么?
4、拼三角形
师:两个180°不是360°吗?
小结:看来,组合以后的图形还要分清楚哪些是内角。
活动7【练习】拓展练习
(一)拓展练习
今天,我们通过自己的研究发现三角形内角和是180度。那四边形有没有内角和呢?它的内角和是多少度?
课件演示。
说说这节课你的收获?
三角形内角和教案篇4
教材分析
教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。
教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。
学情分析
学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。
要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。
教学目标
1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
教学重点和难点
教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。
教学难点:让学生经历探索和发现三角形的内角和是180°的过程。
教学过程:
(一)、激趣导入:
1、认识三角形内角
我们已经认识了什么是三角形,谁能说出三角形有什么特点?
(三角形是由三条线段围成的图形,三角形有三个角,…。)
请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角
形的'内角。(这里,有必要向学生直观介绍“内角”。)
2、设疑激趣
现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)
同学们,请你们给评评理:是这样吗?
现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)
(二)、动手操作,探究新知
1、探究特殊三角形的内角和
师拿出两个三角板,问:它们是什么三角形?
(直角三角形)
请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
(由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)
从刚才两个三角形内角和的计算中,你们发现了什么?
(这两个三角形的内角和都是180°)。
这两个三角形都是直角三角形,并且是特殊的三角形。
2、探究一般三角形内角和
(1).猜一猜。
猜一猜其它三角形的内角和是多少度呢?(可能是180°)
(2).操作、验证一般三角形内角和是180°。
所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
(可以先量出每个内角的度数,再加起来。)
测量计算,是吗?那就请四人小组共同计算吧!
老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:
(3)小组汇报结果。
请各小组汇报探究结果
提问:你们发现了什么?
小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。
3继续探究
(1)动手操作,验证猜测。
没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?
(先小组讨论,再汇报方法)
大家的办法都很好,请你们小组合作,动手操作。
(2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。
学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)
我们可以得出一个怎样的结论?(三角形的内角和是180°)
引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。
5、辨析概念,透彻理解。
(出示一个大三角形)它的内角和是多少度?
(出示一个很小的三角形)它的内角和是多少度?
一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°.)
把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)
这两道题都有两种答案,到底哪个对?为什么?
(学生个个脸上露出疑问。)
大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。
经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°
(三)小结
刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。
(四)、巩固练习,拓展应用
下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)
1、求三角形中一个未知角的度数。
(1)在三角形中,已知∠1=85°,∠2=65°,求∠3。
(2)在三角形中,已知∠1=98°,∠2=49°,求∠3。
2、判断
(1)一个三角形的三个内角度数是:90°、75°、25°。()
(2)一个三角形至少有两个角是锐角。()
(3)钝角三角形的内角和比锐角三角形的内角和大。()
(4)直角三角形的两个锐角和等于90°。()
3、解决生活实际问题。
(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?
(2)交通警示牌“让”为等边三角形,求其中一个角的度数。
4、拓展练习。
利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)
小组的同学讨论一下,看谁能找到最佳方法。
学生汇报,在图中画上虚线,教师课件演示。
请同学们自己在练习本上计算。
(四)、课堂总结
通过这节课的学习,你有哪些收获?
三角形内角和教案篇5
【教材内容】:
北师大版四年级数学下册
【教学目标】:
1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
【教学重点和难点】:
重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。
【教材分析】
?三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。
【教学过程】
一、创设情境,激发兴趣。
出示课件,提出两个两个疑问:
1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的。吗?
2、三个形状不一样的三角形的争论。我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?
二、初建模型,实际验证自己的猜想
在第一步的.基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。
三角形的形状
三角形每个内角的度数
内角和
锐角三角形
钝角三角形
直角三角形
等腰三角形
等边三角形
三、再建模型,彻底的得出正确的结论
因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。
四、应用新知,巩固练习
1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)
2、试一试,在直角三角形中已知其中的一个角求另一个角的度数
3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。
4、说一说,判断三角形的两个锐角的和大于90度;直角三角形的两个两个锐角的和等90度;等腰三角形沿着高对折,每个三角形的内角和是90度。这些说法是否正确?由两个三角形拼成一个大的三角形,大三角形的内角和是360度,对吗?
五、拓展与延伸
通过三角形的内角和是180度的事实来探讨四边形、五边行的内角和。
三角形内角和教案篇6
设计说明
在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去探究、发现新知识的奥妙,从而让学生在动手操作、积极探究的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角板上每个角的度数都比较熟悉,从这里入手,先让学生算出每块三角板上三个内角的和是180°,进而引发学生猜想:其他三角形的内角和也是180°吗?接着引导学生小组合作,任意画出不同类型的三角形,通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差)。再引导学生通过剪拼的方法发现各类三角形的三个内角都可以拼成一个平角。然后利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列的活动潜移默化地向学生渗透了转化的数学思想,为后面的学习奠定了必要的基础。最后安排了三个层次的练习,逐层加深。在练习的过程中,既激发了学生主动解题的积极性,拓展了学生的思维,又兼顾到了智力水平发展较快的学生。
课前准备
教师准备 多媒体课件
学生准备 三角板
教学过程
⊙复习导入
师:请同学们回忆一下,我们以前学过哪些平面图形?(长方形、正方形、平行四边形、三角形等)
师:这些是我们早已认识的平面图形,那么你们知道长方形有什么特征吗?(学生汇报:长方形的对边相等,有四个角,且四个角都是直角)
师:这四个角一共是多少度?(360°)
师:你是怎么算的?(90°×4=360°)
师:请看大屏幕。(课件演示三条线段围成三角形的过程)三条线段围成三角形后,在三角形内形成了三个角(课件分别显示出三个角的弧线),我们把三角形里面的这三个角叫做三角形的内角。
师:通过刚才的回忆,同学们知道长方形四个内角的和是360°,那么三角形的内角和又是多少呢?这节课我们就来探究三角形的内角和。(板书课题)
设计意图:通过复习学过的平面图形,唤醒学生的认知。借助长方形四个角都是直角的特征,学生通过计算很容易知道长方形的内角和是360°,从而质疑三角形的内角和是多少。这样以问题情境开始,既丰富了学生的感官认识,又激发了学生的探究欲望。
⊙探究新知
1.探究特殊三角形的内角和。
师:(课件出示一块三角板)大家熟悉这块三角板吗?请拿出形状与这块一样的三角板,并和同桌互相说一说各个角的度数。(课件出示由三角板抽象出的三角形)
师:这个三角形三个角的度数和是多少?(180°)你是怎样知道的?(90°+45°+45°=180°)
明确:把三角形三个内角的度数合起来就叫做三角形的内角和。
师:(课件出示由另一块三角板抽象出的三角形)这个三角形的内角和是多少度?(90°+60°+30°=180°)
师:从刚才两个三角形内角和的计算中你发现了什么?(这两个三角形的内角和都是180°,且这两个三角形都是直角三角形)
2.探究一般三角形的内角和。
(1)刚才我们探究了直角三角形的内角和是180°,那么其他任意三角形的内角和又是多少度呢?请大家猜一猜。(大多数学生认为也是180°)
(2)操作、验证一般三角形的内角和是180°。
师:刚才大多数同学认为三角形的内角和是180°,但也有几个同学不敢肯定,那么我们用什么方法来验证这个猜想是否正确呢?
①小组合作,探究验证方法。
师:请每位同学先独立思考,然后把你的'想法在小组内交流,看一看哪个小组想出的方法最多。
②交流汇报。
预设
组1:我们小组用量角器把三角形的三个内角的度数分别量出来,再加起来看一看是不是等于180°。
组2:我们小组猜想三角形的内角和是180°,而平角的度数也是180°,如果三角形的三个内角刚好能拼成一个平角,那么就说明三角形的内角和是180°。所以我们小组把三角形的三个内角剪下来,拼一拼,看一看能不能拼成一个平角。
③动手操作,验证猜想。
师:请同学们选择一种你喜欢的方法来验证我们刚才的猜想,验证完,将你的结论在小组内交流。(出示课堂活动卡,教师巡视,参与各小组的验证活动,并给予适当的指导)
师小结:大家刚才量出来的结果或拼出来的结果都在180°左右,其实三角形的内角和就是180°,因为在测量或操作的过程中会产生误差,所以数据会有一些偏差。
3.得出结论。
师:根据上面的验证,我们可以得出一个怎样的结论?(三角形的内角和是180°,教师板书:三角形的内角和是180°)
设计意图:学生通过操作、思考、反馈等过程,真正经历了有效的探究活动,先由直角三角形算出其内角和,再用猜想、操作、验证等方法推导出一般三角形的内角和,最后归纳得出所有三角形的内角和都是180°。在这个过程中,学生不仅体会到了数学学习中归纳的思想方法,还感受到了数学与生活的密切联系。
三角形内角和教案篇7
学科:数学
年级/册:4年级下册
教材版本:人教版
课题名称:4年级下册第五单元《三角形的内角和》
教学目标:
掌握探究方法(猜想—验证—归纳总结),学会用“转化”的数学思想探究三角形内角和。
重难点分析
重点分析:教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。
难点分析:通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。但是围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,这些初步的数学交流能力还欠缺。
教学方法:
1、探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的.习惯。
2、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。
教学过程
导入:各位同学大家好,今天由我来和大家一起学习人教版四年级下册《三角形的内角和》,我们前面学习和了解了三角形的相关知识,请大家说说三角形按角分,可以分成哪几类?知识讲解(难点突破)
例五:画出几个不同类型的三角形。量一量,算一算,三角形3个内角的和各是多少度?解决这个问题的时候,我们先来了解一下什么是三角形的内角和?
讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
(一)量一量:我们如何解决这个问题呢?
同学们请看,这里有一个直角三角形,我们先分别量一量这个直角三角形三个内角的度数并标注。90°30°60°现在我们将这三个内角的度数加起来等于180度°通过测量计算发现这个直角三角形内角和都是180°,是不是所有直角三角形的内角和都是180°呢?同学们你们也来量一量你刚才画的直角三角形3个内角的度数,算一算是不是也和老师的结果一样呢?注意在测量要认真,力求准确。停顿数秒从刚才的测量和计算结果中,你发现了什么?你是不是发现直角三角形的内角和都是180°当然有些同学的测量结果不是等于180°,这是我们在测量时,由于在测量工具、测量方法等各方面的原因,使我们的测量结果存在一定的误差。实际上,直角三角形三角形内角和就等于180°。
(二)
1、提出猜想:刚才我们通过测量和计算发现了直角三角形内角和等于180,那你能不能大胆的猜测一下:锐角三角形内角和,钝角三角形的内角和是不是也是180°呢?
2、动手操作,验证猜想这时每个同学的心中都有了猜测的答案,这个猜想是否成立呢?除了用量角器量一量,你还有其他办法来验证吗?聪明的你,是不是想到好办法了,那就快快动手吧!
方法:
a、拼一拼的方法
b、折一折的方法把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,通过折叠的方法,三角形的三个内角折到一起正好组成一个平角,所以也能证明三角形的内角和是180°。
同学们我们通过量一量拼一拼折一折,发现无论是直角三角形,锐角三角形钝角三角形,它们内角和都等于180度,我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)
小结:通过剪拼的方法,把三个角剪下来,拼在一起,三角形的三个内角正好拼成一个平角,因为平角是180°,所以三角形的内角和是180°三角形的形状和大小虽然不同,但是三角形的内角和都是180度。说明三角形的内角和和他的形状大小无关
课堂练习(难点巩固)
总结:我们今天用量一量,折一折,拼一拼的方法得到了三角形的内角和等于180°这一结论,希望同学们在在以后的学习中大胆探索,去发现数学的奥秘吧!我们今天的课程就到这里了,同学们再见!
三角形内角和教案篇8
教学目标
⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与
教师活动:学生活动媒体应用设计意图
目标达成
导入新课
一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?
我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠a、∠b、∠c来表示。
什么是三角形的内角和?
三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠a、∠b、∠c的式子来表示应该如何写?∠a+∠b+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)
由三角形的内角引出三角形的内角和,“∠a+∠b+∠c”的表示形式形象的体现出三内角求和的关系
二、动手操作,探究新知
1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数
把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?
我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3.学生测量
4.汇报的测量结果
除了我们这节课大家想到的方法,还有很多方法也能验证三角形的.内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°
5、巩固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?
环节
三、应用所学,解决问题。
1、基础练习(课本第68页做一做)
在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。
2、判断题
(1)大三角形的内角和大于180度。()
(2)三角形的内角和可能是180度。()
(3)一个三角形中最多只能有一个直角。()
(4)三角形的三个内角分别可能是30度,60度,70度。()
3、求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。
四、总结:这节课你有什么收获?