小学数学方程教学反思7篇
撰写教学反思可以增强教师的教学科研意识,教学反思是一个教师持续进步的重要手段之一,淘范文小编今天就为您带来了小学数学方程教学反思7篇,相信一定会对你有所帮助。
小学数学方程教学反思篇1
方程是个建模的过程,怎么认识方程?学生不认可有文字的、有图形的等式是方程,怎么解决?
1、方程是个建模的过程,天平可以直接解读方程,所以从直观的天平开始
(1)从图中获取信息。
(2)发现等量关系。
(3)用自己的语言表达。
(4)用含有未知数的等式表达。(数学表达)
2、方程就是讲故事。
让方程回归生活,在身边找方程,进一步理解方程意义。把抽象的方程与生活情境建立联系,让学生换个思路理解方程。
举例列方程:生身高145cm 师身高:xcm 师比生高35cm 生:x-145=35 x-35=145 145+35=x 为什么学生喜欢145+35=x的表达?那是因为对算术思想根深蒂固。
对“方程”的整体建议
1、准确把握内容定位,正确理解其价值。
2、有效开发教学资源,为课堂所用。
3、方程思想不是一蹴而就的,需要用心作好过渡。
让抽象的直观起来,让枯燥的生动起来,把孤立的联系起来!
听了吴老师讲的《认识方程》一课我有很多的收获。方程在小学数学教学中是非常重要的,可以说是小学阶段学习的重点,对于学生将来的初中阶段学习也有着非常重要的意义。吴老师首先借助孩子们熟悉的生活场景引入天平的概念,虽然只是一个天平图片和几张水果图片,几个砝码,普普通通的一节数学课却让吴老师演绎地如此精彩!。
在教学过程中,吴老师先问针对方程想知道些关于方程的什么内容,引导学生说出什么是方程,有的学生可能在书上看到过这句话,知道“含有字母的等式叫做方程。”但对于方程真正表示的意义却不知道。吴老师用简易天平和肢体语言表示平衡与不平衡,然后告诉学生每人心里都有一个天平。通过放水果的游戏,让学生写出一些等式与不等式的关系式,然后通过分类,明白哪些是方程,哪些不是方程。学生在活动的过程中真正明白了方程的意义。课堂上吴老师面向全体,关注学困生,关照课堂上没有注意听讲的学生,不断吸引学生的.注意力,让全体学生都能跟上集体的步伐,在充分的交流与展示活动中,学生快快乐乐、真真实实地构建知识的模型。
总之,通过听、看、感受吴老师的课堂,我真正领略了名师的风采,我将在以后教学中,努力工作,提高自己的业务能力。要以热情的鼓励、殷勤的期待,巧妙的疏导与孩子们思维共振,情感共鸣。要用真诚的爱心去感染孩子们,贴近孩子们的心。在先进的教育思想引导下,以自己独特的教学艺术,把学生推到自主学习的舞台上,使他们真正成为学习的小主人。
小学数学方程教学反思篇2
人教版五年级上册《解简易方程》这个单元中,教材是通过等式的基本性质来解方程,这个方法虽然说使得小学的知识与初中的知识更加的接轨,让方程的解法更加的简单。从教材的编排上,整体难度下降,对学生以后的发展是有利的。但是教材中故意避开了减数和除数为未知数的方程,如:a-x=b或a÷x=b,要求学生根据实际问题的数量关系,列成如x+b=a或bx=a的方程。这样的处理方法,有时也会无法避免地直接和方程思想发生矛盾。例如“爸爸比小明大28岁,小明Х岁,爸爸40岁。”很多学生列出了这样的方程:40-Х=28,方程列的是没有任何问题的,但是应该怎么解呢?允不允许学生用四则运算各部分的关系来解方程?是否该向学生讲解方法?还是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的思想:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就又和现在冲突了吗?现在学习的节方程中,学生很容易看见加法就减,看见减法就加,看见乘法就除,看见除法就乘,如把30÷Ⅹ=15的解法教给学生,能熟练掌握并运用的学生很少,对大部分学生来说越教越是糊涂,把本来刚建构的解方程方法打破了。如果不安排,那么每次在出现的时故意回避吗?
在教学列方程解加减乘除解决问题第一课时,我是这样处理的。先出示做一做的题目,这题更接近学生的实际,学生也能更好理解数量关系。小明今年身高152厘米,比去年长高了8厘米。小明去年身高多少?先让学生读题理解题目中有哪几个量?引导学生进行概括,去年的身高、今年的身高、相差数。追问:这三个量之间有怎样的相等关系呢?
去年的身高+长高的8cm=今年的身高
今年的身高-去年的身高=长高的8cm
今年的.身高-长高的8cm=去年的身高
你能根据这三个数量关系列出方程吗?学生尝试列方程。几乎全班学生都是正确的。
x+8=152 152-x=8 152-8=x
追问学生你对哪个方程有想法?学生一致认为对第三个方程有想法?生1:这个根本没有必要写x,因为直接可以计算了。生2:x不写,就是一个算式,直接可以算了。我肯定到:列算式解决实际问题时,未知数始终作为一个“解决的目标”不参加列式运算,只能用已知数和运算符号组成算式,所以这样的x就没有必要。接着让学生解这两个方程x+8=152 、152-x=8方程。学生发现152-x=8解出来的解是不正确的。告诉学生减数为未知数的方程我们小学阶段不作要求,所以你们就无法解答了。接着,我再引导学生观察这三个数量关系,他们之间有联系吗?其实减法是加法的逆运算,是有加法转变过来。因此,我们在思考数量关系时,只要思考加法的数量关系,这是顺向思维,解题思路更加直截了当,降低了思考的难度。接着只要把未知数以一个字母(如x)为代表和已知数一起参加列式运算x+b=a,体会列方程解决问题的优越性。这就是我们今天学习的一种新的解决问题的方法——列方程解决问题。
接着用同样的教学方法探究bx=a的解决问题。
我这样的教学不知道是否合理?其实小学生在学习加减法、乘除法时,早就对四则运算之间的关系有所感知,并积累了比较丰富的感性经验。要不要运用等式的性质对学生再加以概括呢?
小学数学方程教学反思篇3
教学《方程的意义》,我反复研读了这节课的内容,并与旧教材的进行了对比,思考着新教材为什么这样设计?
旧教材先利用天平认识等式,然后认识方程。而新教材通过情境,先让学生提出问题,学生在解决问题的'过程中,学到用含有字母的式子表示数量之间的关系,在此基础上,利用天平理解等式的意义,最后揭示方程的意义。
在设计这节课时,我把方程的意义作为教学重点,不仅让学生了解方程的概念,还要会判断哪些是方程。更多思考的是学生对方程的后继学习与思考,注重知识的渗透。如后面学习的等式的性质、用方程解应用题等等。
课堂上我让学生根据创设的情境,提出数学问题,学生几乎提不出表示两者之间关系的问题,都是些求未知数的问题。这时教师就直接出示要求的问题,然后让学生先找等量关系式,我发现只有极少数孩子能找到等量关系。由于找等量关系式教材中第一次出现,学生不知道从哪入手。学生思考讨论了一段时间,我发现也没有结果,我就引导着学生进行分析信息,找到了等量关系。找到了等量关系式,再列含有字母的式子就简单多了。课下我分析,主要是我在备课时,高估了学生,如何引导还需要多研究。这也是我下一步训练的重点。
为了让学生弄清楚方程与等式的关系,我通过天平的演示,让学生理解等式的意义,学生很容易根据天平列出算式。然后教师指出,我们刚才列出的这些式子都叫等式,在这些等式中,你们又发现了什么?学生很容易得出两种等式:一是不含未知数的等式,一种是含有未知数的等式,在此基础上,让学生比较得出方程的概念,然后通过练习判断哪是方程,那些不是方程?最后,让学生用画图的形式表示出等式与方程的关系,教材中没有出现这个内容,但我补充进去了,我觉得这样有助于学生加深对方程意义的理解。本节课从课堂整体来看,大部分学生思维比较清晰,会表述,但也有部分学生表述不清,发言不够积极。看来,课堂教学还要激活学生的思维,调动起学生的积极性,作为教师,还要多想些办法。
“自主合作探究”一直是我们所倡导的学习方式,但如何有效地实施?我认为,“自主学习”必须在教师的科学指导下,通过创造性的学习,才能实现自主发展。“合作探究”必须在学生独立思考的基础上进行,否则,学生则没有自己的主见,交流则会流于形式,没有深度。有了学生的独立思考,当学生展示交流时,不同的思路与方法就会发生碰撞,教师要尊重学生探求的结果,引导学生对自己的结果与方法进行反思与改进,促使全体参与,加生对知识形成过程的理解,培养梳理概括知识的的能力。
在整个教学过程中,教师作为主导者,要启发诱导学生发现知识,充分发挥学生的潜能,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。
小学数学方程教学反思篇4
?解简易方程》教学反思数学课程标准(实验稿)》改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:
老方法:
x + 4 = 20
x = 20-4
依据运算之间的关系:一个加数等于和减另一个加数。
新方法:
x + 4 = 20
x + 4-4=20-4
依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。
改革的原因(摘自教学参考书):
新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。
从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。
那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题? 在我的教学过程中真的出现了问题 。
1.无法解如a-x=b和ax=b此类的方程
新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与xa=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓相比原来方法,思路更为统一的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而ax=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。
我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或ax=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的'处理方法,有时更会无法避免地直接和方程思想发生矛盾。
如3千克梨比5千克桃子贵0.5元。梨每千克2.5元,桃子每千克多少元?
合理的做法应是设桃子每千克x元,从顺向思考,列出方程为2.53-5x=0.5。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成5x+0.5=2.53之类的方程。又如:课本第62页中的爸爸比小明大28岁,小明Х岁,爸爸40岁。很多学生根据爸爸比小明大28岁列出40-Х=28,可是无法求解,所以又转成Х+28=40。
很明显,第二个方程是和方程思想的基本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更加直接自然。为实现这个目标,很重要的一点,就是列式时应尽量顺向思考,以降低思考的难度。这是体现方程方法的优越性必然要求。事实上,如果学生能够列成5x+0.5=2.53 Х+28=40那就说明他已经非常熟悉其中的数量关系了,此时,用算术方法即可,哪还有列方程来解的必要呢?我们又怎谈引导学生认识方程的优越性呢?
我们不难看出,根据现实情境列方程解决问题,x当作减数、当作除数,应当是很常见、很必要的现象。要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。
2.解方程的书写过程太繁琐
教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。
因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了
从这两个方面来看,小学里学习等式的基本性质,并运用它来解方程,在实际操作中,也存在许多的现实问题。那么,如果说用算术思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,那我们又如何是好呢?
小学数学方程教学反思篇5
?方程的意义》是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性。而且数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。
?方程的意义》这节课与学生的生活有密切联系,通过本节课的学习,要使学生经历从实际问题中总结概括出数学概念的过程。让学生初步了解方程的意义,理解方程的概念,感受方程思想。使学生经历从生活情境到方程概念的建立过程,培养学生观察、猜想、验证、分类、抽象、概括、应用等能力。通过自主探究,合作交流等数学活动,激发学生的兴趣,所以我在教学设计的过程中十分重视学生原有的知识基础,用直观手法向抽象过渡,用递进形式层层推进,让学生经历一个知识形成的过程,并尽可能让他们用语言表达描述出自己对学习过程中的理解,最后形成新的知识脉络。下面就结
合这节课,谈谈我在教学中的做法和看法。
一、复习导入,激趣揭题
该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。
二、实践操作,建立方程模型
本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:
1.用天平创设情境直观形象,有助学生理解式子的意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、自主操作,提高能力,激发兴趣
在探究方程的意义时我特意给学生提供操作天平平衡的不同材料,让学生分组实践,通过操作、观察天平的状态得到许多不同的式子,由于材料不同,每个组所得的式子也不同,有的全是已知数的式子,有的是含有未知数的式子,多种多样的式子激起学生的探究欲望激发学生观察兴趣。
3、对方程的认识从表面趋向本质
(1)在分类比较中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。
(2)要体会方程是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。
4.在“看”“说”和“写”中体会式子
当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方1
三、实际运用,升华提高
在练习设计中由易到难,由浅入深,使学生的思维不断发展,使学生对于方程意义的理解更为深刻,特别使让学生自由创作方程这一练习题,既让学生应用了知识又培养了学生的创新思维。
本课时教学设计,改变了传统学习方式,利用课本的静态资源通过现代化教学手段,把数学情景动态化,大大激发了学生的学习兴趣,充分体现了以学生为主,让学生独立思考,不断归纳,把学生从被动地接受知识转为自己探究,为学生提供了自主探究,合作交流的空间。在学习中体会到了学习数学的乐趣,在获取知识的同时,情感态度,能力等方面都得到发展。当然这节课还存在一些问题,比如对等式与方程的关系突出得不够,读学生“说”的训练不够,应该给学生更多的表述的机会。
小学数学方程教学反思篇6
小学数学揭示概念的方式有多种,有用图画来揭示概念,有用描述的方法来揭示概念。“含有末知数的等式是方程”,这是用定义的形式来揭示概念。根据方程定义的需要,教学中先教学等式,再教学方程的意义。而所有的教学都离不开天平图,离不开天平平衡的'具体情境,这是联系学生数学与生活的纽带。在教学中,我引领学生将现实问题数学化。课中注意从学生已有知识和经验出发,通过师生合作,生生合作,通过观察、分析和比较,在独立思考和交流中,由具体到抽象感受、理解,构建方程的意义。
课后反馈:
与马科长席谈,令我获益匪浅。马科长肯定了我的教学思路,并对课堂上学生的积极发言感到欣喜,对我班学生的小组合作习惯成效,训练有素甚是高兴。(说实在,一直在寻找小组合作的良方,上学期作了些尝试,不过技艺尚不够纯熟、多样),然而提出的以下三点更是让我深思。
1、充分利用“组合拳”。比如说、写、动手操作等等。特写是写,不要满足于学生口头表达正确,其实有时写起来错误百出。是啊,举个小例子:有些汉字我们认识但一写起来,无从下笔,还有课堂上总归能得到正确答案,(不然老师不会放过)但它不表示,人人都知道正确答案,我们时常评讲过一个练习,或让学生重新订正完一份试卷,收上来一看,结果却差强人意,想必原因与此同理。我们的课上应让每个孩子动起来,让他们展示,小黑板、实物投影,十八般武艺,能用尽用上,而不是仅限于口说正确完毕。
2、书本的运用。现在的课堂有一趋势,依赖课件多多,自主发挥创新多多,我也不例外。虽然新课标希望教师用自己的思考解读课本,但课本舍弃不得,它毕竟是优秀的学者的心血之作。是啊,作为一线教师,我们应当挖掘教材价值,不放过一丁点的利用价值,特别到高年级,可借助课本培养学生的自学能力啊。今后的教学,我定会多多注意。
3、细节的处理还可再斟酌。比如等式与方程的关系教学。此环节什么时候出现?怎样出现?为什么出现?显然我的教学明显操之过急,其实,我也知道,只是上得兴起,太投入了,不自觉的就冒出来了,其实应该在完成练一练的第一题时讨论才好,并适时鼓励学生用自己的方式表达二者之间的关系,真正实现师生、生生之间的互动。现在想起略显遗憾,好在我倒也淡定,因为此生遗憾的事太多了。不过我也要提醒自己:对教材,对学生,千万多思三个“w”即“what、when、 why”。
小学数学方程教学反思篇7
方程的意义这部分内容是学生初步接触了一点代数知识之后进行教学的,重点是“方程的意义”。设计的意图是想通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。因此本课设计了活动探索、自主分类、抽象概括、灵活运用4个环节,让学生通过观察、分析、抽象、概括,建立起方程的概念,明确方程与等式的关系。
根据儿童思维发展的递进性,设计了三个层次的活动,一是通过学生观察,抽象出相应的数学式子,建立起“平衡—相等、不平衡—不相等”的概念;二是通过自主探索,合作交流的学习方式,使不同能力的学生都得到有效发展;三是引导学生对“等式”观察,将等式分为“含有未知数”和“不含未知数”两类,然后抽象出方程的概念。最后通过判断与独立创作方程两个学生活动,进一步理解了方程的意义,明确方程与等式的关系。教学实施中的不足之处:教师在教学中用语不够准确精练,对学生的数学语言表达能力指导欠缺,对学生的发言教师倾听程度不够,未能很好把握课堂教学中生成的课堂教学资源。