分数和小数的互化教案7篇
优秀的教案能够通过引导学生进行小组合作,教案中设定的学习任务应具有实践性,以增强学生的动手能力和应用能力,以下是淘范文小编精心为您推荐的分数和小数的互化教案7篇,供大家参考。

分数和小数的互化教案篇1
【设计说明】
1、关注学生已有的知识基础,理解并掌握互化的方法。
小数的意义是小数化成分数的基础,而分数化成小数的依据是分数与除法的关系和分数的基本性质。因此,教学时先回顾相关的知识,在学生已有知识的基础上,让学生自主探究、交流讨论分数和小数互化的依据,促进学生掌握分数和小数的互化方法。
2、在注重算法多样化的同时,更注重优化。
比较分数和小数的大小的策略是比较丰富的,教学时既注重启发运用多种策略解决问题,同时又适时地提出一般的方法,那就是把分数化成小数计算比较简便。这样不仅可以让学生体会算法的多样化,还可以提高学生解决问题的能力。
【课前准备】
教师准备ppt课件投影仪
【教学过程】
⊙知识回顾,沟通联系
1、分别用小数和分数表示下面各图中的阴影部分。
小数:( )小数:( )
分数:( )分数:( )
2、想一想,填一填。
(1)0.3里面有( )个十分之一,它表示( )分之( ),写成分数是( )。
(2)0.17里面有( )个百分之一,它表示( )分之( ),写成分数是( )。
(3)0.009里面有( )个千分之一,它表示( )分之( ),写成分数是( )。
师:通过上面的练习,你认为分数和小数存在着什么联系?(板书课题:分数和小数的互化)
设计意图:学生在学习小数的意义时,已经知道小数表示的是十分之几、百分之几、千分之几……的数,前面学生又了解了“分数与除法的关系”,因此,这里设计练习的目的就是唤起学生的回忆,建立分数和小数之间的联系,为学生进一步学习做好准备。
⊙自主探究,总结规律
(一)教学例1。
1、课件出示教材77页例1。
2、请学生在练习本上试做,教师巡视并进行个别指导。
3、交流:教师根据巡视的情况,选择两种不同形式的结果投影展示。
4、让展示的同学介绍自己在做题时是怎么想的,其他同学可以补充。
5、思考:根据前面同学的.汇报,你对这两种不同形式的结果有什么认识?
(引导学生总结并确定两种不同形式的结果是相等的,同时注意最后的结果要化成最简分数)
0.3=0.6=
6、比一比,看谁做得快。
(1)填一填。
0.07=0.24==
0.123=0.032==
(2)把下面的小数化成分数。
0.4 0.05 0.37 0.45 0.013
7、提问:从上面的几个题目中,你发现小数化成分数有什么简便方法了吗?小数化成分数后要注意什么?
(学生讨论后汇报)
师生共同总结:把小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来的小数去掉小数点作分子,化成分数后,能约分的要约分。
分数和小数的互化教案篇2
教学目标:使学生理解和掌握分数与小数的关系,掌握分数与除法的关系,掌握小数化分数,十进分数化小数的方法.
教学重点:掌握小数与分母是10,100,1000……的分数互化的方法
教学难点:使学生理解小数化分数后,能约分的要约分,分数化小数后,小数位数不足的要用"0"补足.
教学课型:新授课
教具准备:课件
教学过程:
一,习旧引新,揭示矛盾
说出下列分数的分数单位和有几个这样的分数单位.[课件1]
9/10 3/100 1 425/1000
填空.[课件2]
0.9里面有9个( )分之一,它表示( )分之( ).
0.07里面有7个( )分之一,它表示( )分之( ).
0.013里面有13个( )分之一,它表示( )分之( ).
4.27表示( )又( )分之( ).
3,揭示课题:分数和小数的互化
二,指导自学,认识矛盾
自学课文p119 ~ 120 .例6 ~ 例7 [课件3]
(1)思考:a,为什么说小数实际上是分母是10,100,1000…的分数的另一种表示形式
b,怎样将小数化成分数
c,带小数化分数时,其整数部分怎么处理
d,应用什么知识可以将分母是10,100,1000…的分数化成小数
e,如何将分母是10,100,1000…的分数化成小数
(2)反馈.
p119 .做一做
习后提问:谁能说说小数化分数的方法
板述:小数化分数,原来有几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子;化成分数后,能约分的要约分.
② 把下列分数化成小数.[课件4]
3/10 5/100 1 3
习后提问:a,观察这几个分数的分母有什么特点
b怎样将分母是10,100,1000…的分数(即十进分数)化成小数呢
板述:分数化小数,可直接去掉分母,看分母中1后面有几个零,就在分子中从最后一位起向左数出几位点上小数点.
三,巩固练习,强化提高
1,p122 .1
2,p122 .3
四,家庭作业
p122 .2,4,6
板书设计: 分数和小数的互化
小数化分数,原来有几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子;化成分数后,能约分的要约分.
分数化小数,可直接去掉分母,看分母中1后面有几个零,就在分子中从最后一位起向左数出几位点上小数点.
分数和小数的互化教案篇3
活动(一)创设情境,提出问题:补充(点评)
1、口算比赛:(时间:1分钟)
5/6―1102/91―15154/3
5/8+31248+15+145
想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占
总题数的几分之几?)
2、学生根据自己的口算情况口答做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?
3、提出问题:能否将做对的题数占总题数的几分之几的分数应用题改成一道百分数应用题呢?补充(点评)
(将做对的题数占总题数的几分之几改成做对的题
教学设计
校对并让学生说说自己的口算情况,
补充(点评)、
数占总题数的.百分之几)
活动(二)相互合作,探究问题:
(一)初步感知
1、学生尝试解答各自的做对的题数占总题数的百分之几和做错的题数占总题数的百分之几的问题。
2、小结:求一个数是另一个数的百分之几的百分数应用题与求一个数是另一个数的几分之几的分数应用题解法相同,关键是找准单位1,所不同的是,求一个数是另一个数的百分之几的百分数应用题计算的结果要化成百分数。
(二)共同探讨
1、师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自做对的题数占总题数的百分之几这是你在这次口算比赛中的正确率,做错的题数占总题数的百分之几就是错误率。像这些正确率、错误率等我们通常称作百分率。你能举一些我们日常生活中的百分率的例子吗?
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
合格的产品数发芽的个数
产品的合格率=────────100%发芽率=───────100%
产品总数种子的总数
3、尝试解答例题:
(1)出示课本例1和例2的条件:
例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人,?
例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。?
(2)完成第113页的做一做
活动(三)运用知识,解决问题:
1、口答:
(1)2是5的百分之几?5是2的百分之几?
(2)用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。
2、判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
3、课堂作业:
1、我国鸟类种数繁多,约有1166种。全世界鸟类约有8590种。?
2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。补充(点评)
活动(四)、全课总结
1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2、学生谈谈今天所学的知识在我们的日常生活中有什么用?
课堂总结
学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。
一、补充练习:
1、判断题
①五年级98个同学,全部达到体育锻炼标准,达标率为98%.
②今天一车间102个工人全部上班,今天的出勤率是102%
③甲工人加工103个零件,有100个合格,合格率是100%.
2、应用题
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.
②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率.
二、作业:结合练习二十九第6题进行课外调查。
分数和小数的互化教案篇4
第一课时分母是10、100、1000。。。。。。的分数化成小数
教学目标:掌握小数化成分数的方法并能正确在把小数化成分数;掌握分母是10、100、1000。。。。。。的分数化成小数的方法并能正确地把它们化成小数。
教学过程:
一、创设情境营造氛围
复习第八册学习过的有关小数、分数的转化。
二、尝试探索建立模型
1.教学分数化成小数
a、直接出示例2,让学生说一说这些分数的`分母有什么特点?应怎样转化?
b、小结转化方法p105
c、练习p105、2
2.教学小数化成分数
a、自学例1,说一说你学会了什么?要注意什么?
b、反馈讲评
c、小结转化方法
d、p105、1
3.比较分数和小数的大小:试一试,想一想可以怎样比较?哪种方法更好?
4.p105、3
三、巩固深化拓展延伸
1.自己说几个分母是10,100,1000。。。。。。的分数,并把它化成小数
2.自己说几个小数,请同桌同学转化成分数。
3.一人说一个小数,另一人说一个分数,比一比它们的大小
4.小结:这节课我们学习了什么?你是怎样学会的?你还有什么要说告诉其他同学的?
分数和小数的互化教案篇5
教学目标
1、知识与技能
掌握分数和小数的互化方法,并能熟练地把小数化成分数,把分数化成小数。
2、过程与方法
在学习过程中,感悟转化的数学方法,培养迁移类推的能力。
情感态度与价值观
体验学习数学的乐趣,养成自主学习的习惯。
教学过程
一、探索交流,解决问题
1、出示例1 把一条3米长的 绳子平均分成10段,每段长多少米?平均分成5段呢?
(1)学生先独立计算,然后用小数表示计算结果和用分数表示计算结果。
3÷10=0.3(米) 3÷5=0.6(米) 3÷10=33(米) 3÷5=(米) 105讨论:能否把小数直接写成分数呢?如果能,怎么写?分组讨论,再试着完成课本第的“试一试”。
(2)小结
小数化成分数时,先把小数写成分数,原来有几位小数,就在后面写几个0作分母,原来的小数去掉小数点作分子。注意能约分的要约分。
2、出示例2。把0.7,来。
(1)提问:这6个数中,有分数、有小数,要比较这些数的大小,该怎么办? 学生想到的方法可能有两种:一是把分数化成小数,二是把小数化成分数,再通分。提问:哪种方法比较简便?为什么?
(2)大家先来看看,两种方法:
方法一:把943711,0.25,这6个数按从小到大的顺序排列起101002545943、写成小数分别是多少? 101007的分子和分母同时乘上相同的数,转化为分母是10,100,1000…的分25数,再改写成小数。
287==0.28 25100
方法二:利用分数与除法的关系,用分子除以分母得出小数。
7=7÷25=0.28 25(3)在让学生将11化成小数。 45学生自己尝试解决,看看出现了什么问题?(分母45不能转化成10,100,1000……作分母。用分子除以分母时,出现了除不尽。)
指出:像这样的分数化成小数时,只能用分子除以分母这种方法,一般情况下,分子除以分母除不尽时,要根据需要按“四舍五人”法保留几位小数。这道题要求保留两位小数。
11=11÷45≈0.24 45
(4)现在,你能把这6个数按从小到大的顺序排列了吗? 学生独立完成。
(5)小结:分数化成小数时有几种方法?
引导学生概括出,一般方法是:用分子÷分母(除不尽时按要求保留几位小数)。特殊方法:①分母是10,100,1000……时,直接写成小数。②分母是10,100,1000……的因数时,可化成分母是10,100,1000……的分数,再写成小数。
(6)完成给出的练习。
先让学生判断哪几个分数可以写成小数?哪几个分数可以化成分母是10,100,1000……的分数,再写成小数。哪几个分数只能用一般方法。然后独立完成,选择自己喜欢的方法,把这些分数化成小数。
二、巩固应用,内化提高
1、 分别用小数和分数表示下面每个图中的涂色部分。
2、李阿姨平均每秒打0.9个字,王叔叔一分钟打50个字,谁打字快些?
5≈0.83 0.83<0.9 6答:李阿姨打字快。
3、小林从学校回家要花25分钟,小凡回家要花相同,谁家离学校远些?
1小时,如果他们两个人的行走速度451325÷60=12412答:距离学校远的是小林家。
4、你知道什么样的最简分数能化成有限小数吗? 你想了解这个规律吗? 其实,只要把分数的分母分解质因数,如果分母中除了 2 和 5 以外,不含有其他质因数,这个分数就能化成有限小数。例如, 的分母 20 = 2×2×5,它就能化成有限小数。如果分母中含有 2 和5 以外的质因数,这个分数就不能化成有限小数。例如, 的分母 30 = 2×3×5,它就不能化成有限小数。
三、回顾整理,反思提升
本节课我们学习了分数和小数互化的方法。小数化成分数时,可以直接把小数转化成分母是10、100、1000……的分数,注意能约分的要约分。而分数化小数时,一般情况下是用分子÷分母,除不尽的按要求取近似值;如果分数的分母是10、100、1000……,可以直接化成小数;如果分母是10、100、1000的因数,可以转化成分母是10、100、1000的分数,再改写成小数。因此,在做分数化成小数的题目时,要认真观察数的特点,灵活选择方法,使得计算又对、又快。
分数和小数的互化教案篇6
教学目标:
1、在解决问题的具体情景中探索发现百分数改写成分数和小数的方法。
2、会将百分数改写成小数和分数。
3、在经历把百分数改成分数和小数过程中,培养学生的归纳能力。
教学重难点:
分数、小数化成百分数的方法和规律。
教学过程:
一、创设情景,导入新课
出示第7页两个监测人员的对话情景:“我们监测了340个城市的空气质量”,“其中有35%的城市达到了二级标准”。
教师:观察情景图,说说你获得了哪些数学信息。
学生:……
教师:根据提供的信息,你能提出哪些数学问题?
(学生可能会提出:还有百分之几的城市空气质量没有达到二级标准、空气质量达到二级标准的城市有多少个等)教师引导学生思考:要解决“空气质量达到二级标准的城市有多少个”的问题怎样列式?引导学生列出算式:340×35%。
教师:说说这样列式的想法。
学生:……
教师:该怎样计算340×35%呢?学生独立思考340×35%的计算方法,并进行交流汇报。在交流中教师重点引导学生借助已有知识,发现要计算340×35%,可把35%写成分数或小数后进行计算,即把35%改写成35100或0.35。
学生尝试计算,并指名板演计算过程:
340×35%=340×0.35=119(个)=119(个)
教师:我们通过把35%改写成分数或小数的形式解决了“空气质量达到二级标准的城市有多少个”的问题。如何进行百分数和分数、小数的互化呢?这是我们需要进一步学习的内容。
板书揭示课题:百分数和分数、小数的互化。
二、自主探索,总结方法
出示第7页例1。
学生自主尝试把17%,40%化成分数学生汇报改写过程并板演:17%=1710040%=40100=25教师:当把百分数改写成分数后,不是最简分数的应化简成最简分数。
教学把46%,128%化成小数学生尝试把46%和128%化成小数。(学生可能会有下面的一些改写形式)46%=46100=46÷100=0.46,128%=128/100=128÷100=1.28。你能将0.5%化成小数吗?
同桌交流后汇报。
教师:观察比较上面的改写式子,你发现了什么规律?
学生:……
小组讨论
交流归纳百分数化成分数、小数的方法
教师:根据我们刚才把17%,40%改写成分数,把46%,128%,0.5%改写成小数的过程,同学们能不能试着说说,怎样把百分数化成分数或小数呢?
学生讨论交流中,教师逐步引导学生有条理地归纳总结得出百分数化成分数或小数的方法。
教师:请同学们自己看教科书第8页两个同学的对话框的内容。教师引导学生总结百分数化分数、小数的方法:把百分数化成分数,先把百分数改写成分母是100的分数,注意不是最简分数的要化简成最简分数;把百分数化成小数,可以直接去掉百分号,同时把百分号前的数的小数点向左移动两位。
三、巩固练习
1、教科书第9页,课堂活动第2题教师:说说怎样才能准确地在格子里涂色呢?学生思考后独立完成在书上。
2、完成教科书第10页第2题和第5题第1小题指名板演,集体订正。
四、课堂总结,结束全课
教师:通过这节课学习,同学们有哪些收获?
学生:……
分数和小数的互化教案篇7
目标
使学生掌握最简分数能或者不能化成有限小数的规律,培养学生的判断和推理能力。
教学及训练
重点
掌握最简分数能或者不能化成有限小数的规律。
仪器
教具
教学内容和过程
教学札记
一、复习
1.让学生说一说怎样把下面的小数化成分数。
1.250.20413.480.109
2.把下面的分数化成小数
16
二、新课
1、教学例3
教师出示例3,提问:例3中各分数的分母与例2的有什么不同?怎样把这些分母不是10、100、1000......的分数化成小数?
教师把例题中的分数按照书上的`顺序从上到下写出来。
教师:我们先看怎样把化成小数,根据分数与除法的关系,分数的分子相当于除法中的什么?分母相当于除法中的什么?那么以写成什么?
教师在3/4的右面板书:=3÷4,并提问:3除以4你们会做了吗?
然而让学生依次把这些题做完,当做到最后两题时,教师可提醒学生按照题目的要求,用约等号和近似数分别表示出它们的近似值,再引导学生出分数化成小数的一般方法,并让学生把教科书第109页上面的法则读一遍,同时指出例题中把分数改写成除法算式,目的是强调分数与除法的关系,计算熟练以后这一步可以省略不写。
2.教学最简分数能或者不能化成有限小数的规律。
我们把每个分数的分母分解质因数(如下)。
4=2×225=5×540=2×2×2×5
9=3×314=2×7
引导学生想出:能化成有限小数的分母中只含有质因数2和5,如果分母中含有2和5以外的质因数,就不能化成有限小数。
然后教师归纳成书上的结语,还要向学生指出:看一个分数能不能化成有限小数,首先要看这个分数是不是最简分数,不是最简分数的,要把它约成最简分数后再运用这一规律来判断。
2.做书上第109页下面”练一练“中的题目
让学生先直接运用规律判断,并说一说判断的依据,再把分数化成小数来验证。
三、课堂练习
做练习二十一的第5-10题
1、第5题,让学生自己做,教师巡视,发现问题,及时辅导。
2、第6题,让学生独立做,订正时让学生说一说这些分数化成的小数之间有什么联系,使学生发现只要记住等于0.5就容易想出等于0.25(0.5的一半),也容易想出等于0.75(3个0.25),等于0.125(0.25的一半)等等。
3.第7、题,让学生先直接判断,再抽出两个分数化成小数来检验判断的是否正确。
4.第8、9、题,让学生独立做,教师巡视,检查学生化成的小数对不对,订正时指名说一说哪些分数能化成有限小数,哪些分数不能化成有限小数。
6.第10题,提示学生如果能直接看出谁大、谁小可以直接判断,如果看不出来,就要把分数化成小数或者把小数化成分数再进行判断,哪种简便就用哪种方法,订正时指名说一说自己是怎样判断的,对运用简便方法进行判断的同学,要给予鼓励。
四、
教师:能化成有限小数的最简分数有什么特点?怎样判断一个最简分数能不能化成有限小数?
分数和小数的互化(二)
分数转化成小数的一般方法:
用分数的分子除以分数的分母,除不尽的一般保留三位小数。
判断一个分数能否转化为有限小数的方法:
(1)不是最简分数的,要先把它约成最简分数。
(2)能化成有限小数的分母中只含有质因数2和5;
(3)如果分母中含有2和5以外的质因数,就不能化成有限小数。