求近似数教案5篇
教案的详细准备能够帮助我们预测和解决可能出现的问题和困难,提高应变能力,优秀的教案能够根据学生的学习情况和需求进行灵活的调整和适应,以下是淘范文小编精心为您推荐的求近似数教案5篇,供大家参考。
求近似数教案篇1
教学目的:
●使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。
●培养学生的类推能力,增进学生对数学的理解和应用数学的信心。
教学重点:能正确的求一个小数的近似数。
教学难点:怎样准确的求一个小数的近似数。
教学过程:
一、导入新课
师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?
生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。
师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)
师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)
师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的近似数呢?今天我们就来一起学习。师板书课题。
1、把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)
986534 58741 31200
50047 398010 14870
2、下面的□里可以填上哪些数字?
32□645≈32万 47□05≈47万
学生填完后,说一说是怎么想的。
[以上复习内容重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础]
二、探究新知
我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高0.984米,平常不需要说得那么精确,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。
师:豆豆的身高0.984米,我们一般怎么表述豆豆的身高?
你是怎样得出豆豆身高的进似数的?
师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?
生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。
生:
(1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。
(2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是1.0还是1。教师出示线段图,看一看给学生带来什么启示。
引导学生小组讨论交流:使学生明确保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在1.4与1.0之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。
师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。
(3)保留整数部分应怎样思考,注意什么问题呢?
师:请同学们回忆求0.984近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的'知识也就是求整数近似数的方法,四舍五入的方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)
(4)小结:
问:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。
②取近似值时,在保留的小数位里,小数末一位或几位是0的.0应当保留,不能丢掉。
三、练习
(1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式)表示出来吗?学生自己修改自己手中的信息,汇报后,再同桌之间交流。
(2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由)
(3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是1.6米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。
(4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。
(5)出示租车说明,判断租多少辆车去出游?
师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。
四、全课小结:教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。
求近似数教案篇2
教学内容:
义务教育课程标准实验教科书青岛版第71页《求小数的近似数》。
教学目标:
1.借助已有经验,使学生掌握求一个小数近似数的方法,能够正确地求一个小数的近似数。
2.在解决问题的过程中,培养学生自主学习的能力,初步学习用猜想、比较、归纳等数学方法学习数学知识。
3.通过独立思考,培养学生认真审题、解题的良好学习习惯。
教学过程:
一、创设情景
1.谈话:同学们,本单元前面几个信息窗我们学习了形形色色的鸟蛋和龟蛋带给我们的数学知识。本节课我们继续来学习本单元最后一个信息窗绿毛龟蛋带给我们的数学知识。
出示情境图,仔细观察画面,你知道了什么?你又能提出哪些数学问题?
学生合作交流。
2.谈话:这节课重点解决他们说的结果为什么不一样和绿毛龟蛋的宽径约是多少这两个问题。其他问题放在问题口袋里以后解决,可以吗?
[设计意图]激发学生的学习愿望和参与动机是引导学生主动学习的前提,通过清晰生动的情境图中出现的两位同学不同的测量结果让学生观察讨论,学生意见不一,于是需要寻找正确的判断方法,由此激起学生探寻新知的强烈愿望。
二、探究新知
1.学生独立思考他们说的结果为什么不一样?这一问题。
谈话:观察两位同学说的结果,你能发现什么?
让学生观察,引导学生发现:小华读出的结果是一个一位小数,小明读出的结果是一个整数。
谈话:对,求3.94的近似数,根据不同的要求,既可以保留一位小数,也可以保留整数。请同学们选择一种情况,根据我们求整数的近似数的方法,研究一下怎样求一个小数的近似数。
学生独立研究后,再在小组内交流。
谈话:哪位同学愿意说说你是怎样求3.94的近似数的?把你的.方法向大家介绍一下。
谈话:你的方法很正确,还有哪位同学与他求得的近似数不同?
谈话:你的方法也很正确。因此,我们在求一个小数的近似数时,依然运用了四舍五入法,关键是看精确到哪一位。
2.学生独立思考绿毛龟蛋的宽径约是多少?这一问题
学生独立思考后,引导学生讨论什么时候小数的近似数的2,什么时候小数的近似数的2.0。
讨论得出:求一个小数的近似数时,保留小数的数位不同,精确程度也不同。
[设计意图]这一环节教学时让学生自己去观察,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生,在观察讨论过程中教谈话为学生创设自由选择的空间,让学生体会自由选择的轻松和快乐。
三、巩固应用
1.黄河的流域面积是75.14万平方千米。(保留一位小数)
2.把1.463保留整数、把1.463保留一位小数和把1.463保留两位小数这三种说法的结果是否是一样的?
3.小华的体重保留整数是45千克,他的体重可能是多少千克?
[设计意图]练习中让学生交流不同的思考方法,鼓励学生思维的创新,方法的简洁,但也照顾学生不同的认知水平,尊重学生的学习成果。
四、感悟收获
谈话:今天大家学得愉快吗?你们最大的收获是什么?
(学生自由说说说本课的收获及体验)
课后反思:
教师是教学的组织者和引导者,而不仅仅是解题的指导者。本节的教学我通过几个问题,几句话做适当的引导,而留给学生大量的时间让他们去观察,去思考,去交流,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生。在学习讨论的过程中,教师为学生创设自由选择的空间,引导学生敞开思维,多角度探索,实现高效率学习。
求近似数教案篇3
教学内容:
教材第11、12页
教学目标:
1、经历生活数据收集的过程,理解近似数表示的必要性。
2、探索“四舍五入”求近似数的方法。
3、能根据实际情况,灵活运用不同精确值的近似数。
教具准备:
相关数据资料,学生课前搜集的数据。
教学重点:
会正确读、写多位数,并能比较数的大小。
教学过程:
一、小组交流收集的有关森林面积方面的数据。
交流收集的有关森林面积方面的数据,并说说这些数据的实际意义。在此基础上引导学生对数据进行分类,在各种分类中重点讨论精确数与近似数这两类数的特点,并让学生再举例说一说日常生活中接触的近似数。
二、用四舍五入法取近似数
出示说一说中的数据,使学生通过比较、分析,了解四舍五入法取近似数的方法。结合是试一试第2题的讨论,体会如何根据不同需要求近似数。
三、巩固与应用
做试一试第1题:汇报时说说取近似值的方法。
试一试第2题:在实际生活中常常需要根据情况取不同精确程度的近似数。在本题中,可先让学生说一说三个近似值的精确程度,再出示下面的两个小问题,供学生讨论。在讨论时重点让学生理解取近似值是根据实际的需要来确定的。
讨论:重点可讨论括号内的数字有几种可能性,分析哪些是“五入的”,哪些是“四舍的”。
四、课堂作业新设计
1、教材第12页底1题。
2、教材第12页第2题。
3、教材第12页第3题。
五、思维训练
括号里能填几?
49()835≈50万、49()835≈49万
求近似数教案篇4
教学目标:
1.通过知识迁移,使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。2.使学生初步了解一个小时的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。3.进一步培养学生运用旧知迁移新知和类比推理的能力。
教学重点:掌握用“四舍五入法”求一个小数的近似数。
教学难点:求小数的近似数时,小数末尾的“0”不能去掉的理解。
教学过程:
一、复习旧知,情境导入。
1.师:同学们好!很高兴今天能和大家一起学习。我一看见同学们就感觉很聪明,是不是这样?既然如此,老师就来考考你们,看看同学们表现如何!
2.板书出示:老师这有个数,请省略万后面的尾数,求出它的近似数。
先写黑板:12953≈1万
3.师:你是怎么想的?(省略万以后的位数,就是看尾数的最高位千位。千位是2,比5小,舍去。)
师:得数约等于1万,千位还可以是哪些数?(0、1、3、4)尾数的最高位比5小,直接舍去尾数。
师:如果得数约等于2万,千位上又可以是哪些数呢?(5、6、7、8、9尾数的最高位等于或大于5,向前一位进1,再舍去尾数。)
4.师:刚才我们求的是整数的近似数,你能说出求整数的近似数的方法吗?
学生说方法。(板书:求整数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。)学生齐读。同学们读得真好,和你们一起学习真快乐!
二、整合情景,探究交流。
1.师:今天我们来研究求一个小数的近似数,在实际应用小数时,往往没必要说出它的准确数,只要它的近似数就可以了。如:昨天豆豆体检,量得身高是(板书):0.984米。平常不需要说得那么准确,我们一般怎么说豆豆的身高呢?(学生讲,红红姐姐说豆豆身高0.98米。或1米。看回答情况板书。)
这就是0.984的近似数,你是怎么得到豆豆的身高的近似数?你们能利用已学的知识来说一说吗?
保留两位小数,就要省略百分位后面的尾数,看千分位。千分位是4,小于5,把尾数舍去。所以0.984≈0.98。
谁再来说一遍?(2-3名同学。表扬。)
2.(如果说的是1米,0.984的近似数还可以是多少?)小白弟弟的说法和小红姐姐不一样,他认为“豆豆身高约1米。”你能说说他的想法吗?
(保留整数,就要省略整数后面的尾数,看十分位。十分位是9,大于5,向前一位进1。所以0.984≈1。)谁再来说一遍?。请同桌把这两题的思考过程互相说一说。
3.同学们真能干,其实这就是我们今天要学习的求小数的近似数。(板书课题)请同学们回忆一下我们求近似数的过程,你发现求一个小数的近似数是怎样做的?(学生回答。)求小数的近似数和求整数的近似数的方法相同。板书:小数。全班读--求小数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。
4.现在,老师来考考你们,0.984可以保留整数、保留两位小数,如果0.984保留一位小数,应该是多少?(保留一位小数,就要省略十分位后面的尾数,看百分位。百分位是8,大于5,向前一位进1。十分位上9加1得10,再向个位进1,所以0.984≈1.0。)
5.学习了求小数的近似值,老师有一些疑惑不能解开,(幻灯出示)0.984保留一位小数得1.0,小数末尾的0能去掉吗,为什么?(指名回答。)
不能,题目要求保留一位小数,必须要0占位。求近似数时,小数末尾的零不能去掉。
求得的近似数1.0和1比较,哪一个更精确一些,为什么?
幻灯演示:保留整数为1,原来的准确长度在1.4与0.5之间,保留一位小数是1.0,原来的长度在0.95与1.04之间。尽管两个数的大小相等,但表示的精确程度不同,小数保留的位数越多,精确的程度越高。
三、练习。(智力闯关。)
同学们利用我们以前学过的知识“求整数近似数的方法来求一个小数的近似数”,希望同学们在今后的学习中也能运用我们学过的知识来解决问题。
1.第一关。保留一位小数。
0.58≈0.63.788≈3.8
精确到百分位。精确到百分位就是保留几位小数?
12.004≈12.001.987≈1.99
保留整数。
9.956≈109.0448≈9
2.第二关。在□里填数。
2.9□≈2.98.5□7≈8.56
3.第三关。
姚明的身高约为2.2米,姚明的身高可能是多少米?
2.15(6、7、8、9)2.155……
2.20(1、2、3、4)2.……
四、全课。
你今天有哪些收获?保留一位小数,就是精确到十分位,……
板书设计
求小数的近似数
12953≈1万0.984≈0.98保留两位小数,看千分位。
小于5,舍去。小于5,舍去
0.984≈1.0保留一位小数,看百分位。
0.984≈1保留整数,看十分位。
大于5,向前一位进1。
求近似数教案篇5
【教学目标】
1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。
2、通过学生自主探索、合作交流,培养学生的探索能力。
【教学重点】
使学生掌握求一个小数的近似数的方法。
【教学难点】
使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。
【教具】
多媒体课件
【教学过程】:
一、课前预习
1、怎样用“四舍五入”法求出一位小数的近似数?
2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?
二、展示交流
(一)创设情境,引入新知
课件出示豆豆,看看小豆豆的身高是多少呢?
今天下午我们就来研究求一个小数的近似数。
(二)求小数的近似数的方法
1、同学们还刻求整数的近似数的'方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?
2、探究新知
(1)同桌讨论回忆什么是“四舍五入”法?
(2)讨论尝试
①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。
②出示例1,讨论求0。984的近似数
③保留一位小数时,末尾的“0”为什么应该写呢?
(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。
(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数
1、出示教材第74页例2
①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?
②结论:改写成用“亿”或“万”作单位的数。
2、从算理入手,理解改写方法。
①讨论:怎样改写呢?
②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。
三、检测反馈
1、教材第74页上、下的“做一做”。
2、教材第75页练习十二第一、2题。第3、4题
四、板书设计教
求一个数的近似数
四舍五入
法
保留两位小数0.984≈0.98 142800千米=14.28万千米
保留一位小数0.984≈1.0 778330000千米=7.7833亿千米
≈7.8亿千米
保留整数0.984≈1
注意:在表示近似数时,小数末尾的0不能去掉
教学反思:
现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。